
Nimx Code Description

Basic 10-Liner for the NOMAM 2014 Competition

by Cliff Hatch

Bouton’s Algorithm

Details can be found in Wikipedia, but briefly the algorithm works as follows:

• The numbers of counters on the rows are listed as binary numbers. (The program uses 6 bit
numbers, permitting a maximum of 63 counters per row.)

• The bits in each column of the list are summed.

• If the sums for all columns are even, the position is safe (i.e. it provides a path to victory),
otherwise it is unsafe.

Variables

Variable Description

A Row number from which to remove counters.

B(r,p) Array of numbers of counters expressed in binary bits.

• r denotes the row.

• p denotes the binary bit, 1-6, high to low order (reverse ordering economises on
code slightly).

C(r) Array containing the number of counters in each row.

• r denotes the row.

D Bit counter.

E Number of counters on a particular row, for setting the start position.

F Move OK flag.

• =0, User has not input a valid move yet.

• =1, The user has input a valid move.

I Game over flag

• =0, game over

• >0, game in progress

J General purpose counter.

N Number of counters to remove.

P Power of 2, used for translating numbers of counters into binary bits.

Q$(1) String to receive input when the user presses return to replay.

R Number of rows.

Variable Description

S Safe position flag.

• =0, Safe

• >0, Not safe

T Number of odd sums.

V Row counter

W Used to convert numbers to binary bits by subtracting successive powers of 2.

X(r) Working copy of C(r), used to manipulate the position to find the machine’s move.

Code Comments

0 READ R:DIM C(R):DIM B(R,6):DIM X(R):FOR J=1 TO R:READ E:C(J)=E:NEXT J:DATA 3,3,4,5

• Read the number of rows in the start position.

• Dimension arrays.

• Read the number of counters on each row.

1 DIM Q$(1):CLS :SETCOLOR 1,8,14:SETCOLOR 2,8,0:SETCOLOR 4,1,8:? "NIMX":GOSUB 9:IF
RND(0)<0.5 THEN 3

• Initialise graphics.

• Print start position.

• Randomly choose who is to start. Go to line 3 if it is the machine.

2 F=0:WHILE F=0:? "Your Move: ";:INPUT A,N:IF A>=1 AND A<=R:IF N>=1 AND
N<=C(A):C(A)=C(A)-N:GOSUB 9:F=1:ENDIF :ENDIF :WEND

• Input, validate and print the user’s move.

3 GOSUB 7:IF I=0:? "You Win! Return to Replay";:INPUT Q$:RUN :ELSE :? "My Move: ";:FOR J=1
TO R:X(J)=C(J):NEXT J:A=0:S=1:ENDIF

• Check for user win, and replay when the return key is pressed (redundant if this is the first
move of the game, but this action has to share a line with other code to stay below the 10 line
limit).

• Initialise variables for calculating the machine’s move. Includes making a copy of the current
position, C(r).

4 WHILE A<R AND S<>0:C(A)=X(A):A=A+1:N=0:WHILE C(A)>0 AND S<>0:C(A)=C(A)-
1:N=N+1:GOSUB 7:WEND :WEND

• Decrease the number of counters in each row, one by one, until a safe position is found or
the last counter has been removed from the last row.

• On completion, if a safe move was found and executed S=0, Otherwise S<> 0.

5 IF S<>0 THEN C(A)=X(A):A=RAND(R)+1:WHILE C(A)=0:A=RAND(R)+1:WEND
:N=RAND(C(A))+1:C(A)=C(A)-N

• If S<>0 no safe move was found, make a random one instead.

• Choose a row at random, ensure it is not empty and remove a random number of counters
from it.

6 ? A;",";N:GOSUB 9:GOSUB 7:IF I=0:? "I Win! Return to Replay";:INPUT Q$:RUN :ELSE :GOTO
2:ENDIF

• Check for machine win. Replay when the return key is pressed.

• Otherwise go to line 2 to process the user’s next move.

7 FOR V=1 TO R:P=32:W=C(V):FOR D=1 TO 6:IF W>=P:B(V,D)=1:W=W-P:ELSE :B(V,D)=0:ENDIF
:P=P/2:NEXT D:NEXT V:S=0:T=0:I=0

• Start of Subroutine to apply Bouton’s algorithm and set flags I and S.

• For each row, translate the number of counters into binary bits, starting with the high order bit
(denoting 2

5
 = 32)

• Initialise S, T and I.

8 FOR D=1 TO 6:FOR J=1 TO R:T=T+B(J,D):NEXT J:S=S+T-(2*INT(T/2)):NEXT D:FOR J=1 TO
R:I=I+C(J):NEXT J:RETURN

• For each column in the list of binary numbers, set T to the sum of the binary digits.

• Set S to the number of odd sums found over all columns (if this is zero the position is safe).

• Set I to the total number of counters (if this is zero the game is over).

• End of subroutine.

9 ? :FOR V=1 TO R:IF V<10:? " ";:ENDIF :? ;V;:? ;" ";:J=C(V):WHILE J>0:? ;"•";:J=J-1:WEND :?
:NEXT V:? :RETURN

• Subroutine to print the current position.

