New Mazes for Shamus

slx, October 2017

This project is dedicated to Cathryn Mataga who created Shamus and Thor Wolosenko
who created Synapse Software, home of some of the finest period games and game art
for Atari 8-bit computers.

Copyright Issues

Shamus was originally written by William Mataga and pub-
lished by Synapse Software in 1982. Copyright is assumed to
be with Cathryn Mataga at the time of this patch. The C64
levels are believed to have been developed by Jack L. Thorn-
ton who is named on the C64 version title page. I have been
unable to contact either of them and hope that they approve
of this patch.

Copyright of the patch and conversion software is with the
author

Permission to use, copy, modify, and distribute this software
for any purpose without fee is hereby granted, provided that
the above copyright notice and this permission notice appear
in all copies.

Should any of this interfere with any copyright of the original
author(s), their copyright shall have precedence.

THE SOFTWARE IS PROVIDED ”AS IS” AND THE AU-
THOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE INCLUDING ALL IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR, CONSEQUEN-
TIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLI-
GENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFOR-
MANCE OF THIS SOFTWARE.

Instructions

Use [OPTION] to select the starting Maze. “Tournament” will
play through all mazes in sequence.’

When you die in tournament mode the next game will start
at the beginning of the maze you died in. The maze selection
will still read “Tournament”. In order to start a tournament
from scratch, use [OPTION] to rotate through all the mazes
until you are in “Tournament” again.?

Use [SPACE] to pause and the fire button to end the pause.

L except the “Original C64” which is almost identical to the original Atari
maze.

2 while this is owed to the maze selection logic, consider it a “continue”
feature ;-)

History

How it all began When I got an Atari 800 for Christmas in 1982 I didn’t get

Shamus!

any software for it but BASIC and DOS 2.0S. I can’t blame
my parents as they had spent the equivalent of a nice used
car on the 800/810 combo. Gaming had not been central to
my lobbying for a computer despite Star Raiders being one
of the core reasons not to have anything but an Atari. (My
father always proposed other computers and let me argue for
the Atari, maybe he considered that a kind of rhetoric training.
The availability of Star Raiders was not something I could use
in favor of the Atari.)

I sequestered the kitchen TV and started working through the
BASIC book on Christmas morning®. Together with a friend
who had received a 400/410 with Pac-Man instead of Star
Raiders 1 had to wait for a full two days until we could make
the pilgrimage to a small computer shop that carried Atari
stuff. Apart from the core Atari lineup, there wasn’t a lot
of software available, so Star Raiders — dearly paid for with
more than three months” worth of allowances — remained my
only game for the time. I continued to fill my four floppies?
with BASIC programs and typed up listings from Compute!
which — probably considered useful English literature — was
soon arriving by subscription paid by my parents.

On an Easter holiday trip to Germany the following year I
managed to divert my parents to the small town of Holzkirchen
southeast of Munich, home of one of the larger Atari dealers
advertising in the German magazines as well as Hofacker, Ger-
man twin of Elcomp publishing. I arrived with some saved
money and great expectations as software was more readily
available and a bit cheaper in Germany. The shop was much
smaller than the Atari paradise I had envisioned when read-
ing their ads and most of the programs on sale were not what
I was looking for. I had read a favorable review of Shamus
in Compute! # 33 and knew Synapse as a quality company
from playing Nautilus with my friend, so I hurriedly bought a

3 presents are given on Christmas Eve here

4 A 10-pack of floppies cost as much as Star Raiders and was therefore
out of budget. I had only been able to afford three floppies when I
bought Star Raiders, the fourth was the blank that came with my 810.

30 years later

copy of Shamus and The Sands of Egypt while my family was
waiting in the car.

With three games in my library I played each of them a lot.
I became quite adept at Shamus, drew a map of the first two
levels and put a lot of effort into winning the game (I remem-
ber restarting when I had lost a life before reaching the green
level). At the height of my prowess I reached 127K points
clearing the complete maze twice in a row.> With pirated
games eventually finding their way to Austria, there were more
games to play later that year but to this day I consider Shamus
my favorite Atari action game.

A good friend of mine had gone the Commodore route from
VIC-20 to C64 and showed me a pirated copy of Shamus.
While I was rather disappointed with the colors, the lack of
“glow” from the walls and the much more cartoonish looks of
the Shamus, I noticed that Commodore players got five mazes
to choose from.

I did not become a software engineer but a pilot and with In-
ternet and eBay some of the tempting stuff seen in Compute!
and Antic ads in the 1980s is now within reach (if not rea-
son), allowing me to amass a small (but far from complete)
collection of Atari stuff. Lots of new gadgets promise easier
use of Ataris than ever. ANTIC and other Atari and retro-
computing podcasts make good listening on the way to the
airport - although the rate of publication of ANTIC would ac-
tually require a move away from work to keep up. An Atari
130XE adorns the desk of one of my teenage sons and is used
as an alarm clock. Both of us have submitted a 10-liner, a new
challenge is required. While I do have ideas for whole games,
I know that actually programming one would likely require
more time than I can spare. While my reflexes are insufficient
to play Shamus like I used to, even with the “made for Shamus”
TAC-IT hooked up to a Stelladaptor, I still like it and somehow
the idea of porting the “extra” mazes on the C64 to the Atari
takes hold.

I don’t know anything about the inner workings of SID, VIC
& Co., so I decide to start on the Atari side. As there is no
way for 128 screens of maze to fit into an early Atari cart, the
maze must be encoded. I plan to look for that “map code” and
then see if I can find the same code on the C64. Once I find
it I only need a little program to copy it where the Atari can
use it. Should be simple.

5 Then unknown to me Softside lists high scores almost twice as high.

Cheating with Altirra

Digging C64

Flipping bits

Walls, walls, walls

Altirra’s Cheater function is of great help as it takes only a
few tries to find out that the current level is stored in $208
and $235°% and setting a breakpoint on reads to that address
reveals tables relevant to the map.

So I fire up the x64 emulator, get into the debugger and find
.. nothing. That means I will have to dig deeper and find out
how the mazes are coded in both versions and how to translate
them.

While countless Atari columns, articles and books have left me
with what I believe to be a fairly good understanding of how
the Atari works (even if that doesn’t translate into assembly
programming mastery) a glance at C64 system descriptions
convinces me that I feel too old to learn another 1980’s archi-
tecture. Having had a classic 800 even Atari bank switching
feels foreign to me, the more complicated C64 scheme with
“write-through” ROM, etc. is clearly intimidating.

I therefore decide not to work from the display backwards but
follow any traces the map selection mechanism in the C64
menu might leave. C64Debugger turns out to be just the right
tool for the task. A wet dream of every 80’s hacker showing
a live view of running code and color coded blinking RAM
displays indicating reads and writes, it looks as psychedelic as
the C64 memory layouts are confusing. It soon reveals that
changing the level changes just one byte but on starting the
game a 384 byte long block is copied to a fixed address. That
must be the C64 map!

The task ahead is a bit tedious. I start to change the map
bytes on both systems bit by bit and observe what that does to
the maze layout. Changes only take effect when walking into a
room, requiring a lot of jogging back and forth between rooms.
Switching off collision detection saves the waiting Shamus from
certain death. Different monitor/debugger command sets on
x64 and Altirra as well as frequent “bit jogging” hopefully post-
pone certain death for my brain cells as soon I don’t need tables
or jotting paper to convert from binary to hex and back.

The basic method of coding “ordinary” maze rooms or “cham-
bers” is quite similar on both systems. The grid of possible
interior walls looks like a #, with each vertical and horizontal
line or wall consisting of three parts. Single bits of the first
map byte switch “on” and “off” horizontal interior “walls” and

6 going to room 2 I look for addresses containing 2, then move to room
3, check which of them now read 3, and after one more room it’s down
to the 2 addresses I am looking for.

A maze of passages —
but not alike

Moving through the
maze

Colored potions

the second byte controls vertical walls. While the principle is
the same on both systems, the order and position of bits within
the map bytes is different. I find that thinking about an ele-
gant way to invert a bit sequence in 6502 Assembler (maybe
with ASLs and ADCs?) is very helpful in falling asleep almost
immediately.

Other bits are not that straightforward. Turning on two bits
will make any C64 room a “pod room” with vertically moving
barriers with just a small slit through which you have to hit
the target in the middle of the room to advance. No such
bits are found on the Atari and sleuthing method number two
doesn’t work either. A suspicion that combinations of bits over
several map bytes might be significant raise the frightening
prospect of having to go through 65535 combinations in order
to understand the maze map, so I set this aside for the time.

Apart from “ordinary” and “pod” rooms there are “corridors”,
tighter passages between the chambers I have successfully de-
coded. On the Atari setting the high bit of map byte one turns
that room into a corridor room and the next three bits select
the type of corridor. The C64 coding is a bit less obvious and a
bit more flexible. After designing some “crazy” corridors with
partly open walls I find out that corridor walls are defined in
the same way as ordinary walls and a cleared low bit on the
second map byte causes the area outside the walls to be “filled
in” to form a corridor.

I make a note that this allows for corridor shapes not coded
on the Atari, such as a vertical passage. I also note that this
would make no sense due to the way that rooms are connected.

Leaving a room to the left or right simply decreases or increases
the room number. That means room 25 will always be to the
left of room 26 and to the right of room 24. Whether those
rooms are actually next to each other on the map doesn’t
matter as the electrocuting walls will prevent any progress
outside the maze (unless collision detection is turned off, that
is).

Vertical movement is simpler than I expected. On the Atari
all corridor rooms have the number of the vertically adjoining
room in map byte two. The C64 stores the same information
in byte three. Whether you move up or down is irrelevant
and the corridor shapes on the Atari are all limited to either
an up- or a downward exit. Both exits of a vertical corridor
would lead to the same room.

Bytes three and four of the Atari map are used to encode

7

Action!

“objects”, i.e. the extra lives, mystery (?) bonuses, keys and
keyholes. With only four different objects and only 16 colors
used’, this seems like a rather lavish use of memory. The
C64 code manages to squeeze the object information in the
two unused lower bits of byte one and the high bit of byte
three. As objects are only found in chambers which don’t have
vertical connections, byte three is used to store key/keyhole
color for these rooms. Fixed, non-mapped colors are used for
the potions and mystery bonuses.

While I feel that I know have a good knowledge of the map
encoding on both machines, there are aspects that I did not
manage to track down. I can’t seem to find any encoding for
the number of enemies per room although that number seems
to vary within a certain bandwidth for every room. I decide
to accept a forum opinion that this number is procedurally
generated. I also don’t know how the change from black to
blue to green to red levels is effected and for the time assume
that it is hard-coded somewhere.

I save the C64 map data which is conveniently located in a
contiguous block from $610D to $688C to a “raw” file to feed
my converter. While I do not intend to use the “original” level
I decide to include it as comparison with the Atari map might
be helpful in weeding out errors. A little more detective work
leaves me with the addresses of the title and menu screens and
the scroll routine.

The next task is to write a “converter” that will turn the 384
bytes of each C64 map into 640 bytes of Atari map. To keep
the retro spirit I decide to implement this in Action! on an
Atari (emulator) rather than using Python (which I am not
fluent in either but which would allow more comfortable code
editing and easier debugging).

Transferring the C64 map file to the Atari is much easier than
it would have been in the 80s and just a drag and a drop away
in the Emulator disk manager. As this is going to be a quick
and dirty little program only, I generously declare two arrays
which will hold the complete input and output files.

While probably screaming for pointers, it would be a first for
me to use them, so I decide to use a little more clumsy array
indices in order not to out-code myself and have code that is
easier to understand to someone reared with BASIC who never

7 for some reason which I come to understand only later, colors are stored
in the lower nibble and shifted up four bits and ORd with a brightness
of $06 before use.

Just a quick hack!

Where are those pod
rooms?

progressed much beyond it. (I actually tried some pointers
but failed to find the caret using a German keyboard with
Atari800MacX.)

Two loops run through 128 maze rooms five times in a row
and a little IF ... THEN code will check the C64 map bytes
and write out their Atari equivalents. With detailed notes in
hand it should be a matter of an evening or two to finish this
and move on to some assembly coding for the menu.

A lack of Action! proficiency, a little sloppy (sleepy?) late-
evening coding and the discovery of a few unknowns extend
that task to more than a month of on-and-off evening (and
sometimes even daytime) coding. The Action! compiler will
happily accept Syntax that is not what you meant to do but
clean enough to address the same variable in a different way.
Not only does this result in source code wrecked by rampant
writes to nonexistent array elements but it also disarms traps
I set to catch missing conversion routines.

I discard the idea of an elegant bit inverting routine using inline
assembly code and write an ordinary Action! subroutine that
does the job and is easier to understand when looking at the
code. Speed and memory are of no concern as the converter is
destined for single-use only.

For the corridors I write a function that checks for those com-
binations of map byte 1 and 2 on the C64 that will result in
any of the 7 corridor types used on the Atari and returns the
correct Atari code for byte 1. In order to catch if non of the
IFs is true, it returns $FF when no matching corridor is found.
At least that’s my intention.

Now I remember that I still don’t know the Atari coding for
the pod rooms. Am I really back to trying out 65535 combi-
nations? While a true Shamus will follow any trail, he won’t
take the longest one possible unless he runs out of clues else-
where. Indeed searching for the sequence of numbers of known
pod rooms reveals a list of pod rooms and a breakpoint set on
access to that list a snippet of code that checks if a room is
a pod room whenever a room is entered! I generously decide
to dedicate another 128 bytes per level to a list of pod rooms.
While no C64 maze has more than 8, it will keep the map data
evenly spaced and map addresses will be easier to remember.
If someone should ever want to design a maze with all pod
rooms, I am prepared.

Comparing the list of pod rooms between the Atari and “orig-
inal” C64 maps, I find a few differences between them and

9

ARRAY troubles

Patching fun

DLIST diversion

decide to include this C64 map as well. (You need to be quite
good at Shamus to find the differences without using cheat
mode or a debugger, as they're way into the maze.)

A lot of time is lost due to some array indices pointing where
they shouldn’t through some errors in logical thinking I com-
mit during my “(actually not so) quick and (actually quite)
dirty” coding. Sometimes I would love to have used Python
and now be able to quickly print out an array to see what went
wrong instead of having to use PrintBE (OQutputfile($125))
to check a single cell. To see what’s going on/wrong, my con-
verter code is riddled with Print commands. While this allows
tracking progress, it slows the converter down considerably.
But even with Altirra limited to normal Atari speed, compil-
ing is still lightning fast.

Having covered all the known maze encoding after about two
weeks of evening coding during my vacation, it’s now time
to actually use the mazes on the Atari. My converter has
delivered them as a 3.200 byte binary file consisting of five
mazes of 640 bytes each. This time I use WUDSN rather
than anything period and don’t regret the choice. Nice Syntax
highlighting, easy import of the original Atari game binary
code as well as the binary code for the C64 maps and lightning
fast assembly are even better than MAC/65 for someone who
has not done any serious assembly coding in decades.

The “original” Atari code starts with a routine at $7000 that
moves a lot of game code down $4000 bytes, I assume this
puts file loaded code where the original boot disk code was
located. With WUDSN I simply note the JMP address at the
end of that routine, set a new ORG to the address of that JMP
and start coding. While I could use this technique for every
patch required, I would have to patch the code before reloca-
tion, thus patching to different addresses than where the code
will eventually run. As I expect this to be confusing during
debugging, I decide to patch the code after relocation using
LDA/STA sequences. That needs a little more room but I can
use the same technique for patches required before and during
gameplay.

Just like the C64 program, my new maze select routine copies
the selected maze data to where the Atari expects it. To be
able to revert to the original Atari maze I copy the Atari maze
data into a new “slot 0” during game initialization.

Altirra’s .dumpdlist command comes in handy when adding a
new line displaying the selected maze on the menu screen. As I

10

new [OPTION]s

Head to Head

Where’s the door?

can’t extend the original display list without disturbing graph-
ics data immediately following it, I simply copy the display list
data into my assembly code, including the jump instruction at
the end. This lack of attention is going to haunt me for at least
two evenings as [just can’t understand why my new menu re-
fuses to show a new line and why the old display list remains
in use despite any writes to DLISTLO/HI.It’s a head-banging
moment when after hours of trapping writes to DLISTLO and
single-stepping through code I realize that I set it up that way
by copying the old jump instruction!

Adding a check for [OPTION] being pressed is a matter of di-
verting the original console key checking mechanism with a
JSR and adding the replaced instruction just before the RTS,
or at least so I think. While the maze select and display code
works quickly, I simply can’t figure out how the delay code
that requires to release [SELECT] again in order to select the
next higher level works. I have to write my own delay routine
which explains the slightly different behavior of [SELECT] and
[OPTION].

It’s time to select “Original C64” on the Atari and start testing!
It works as expected and as I am now confident that I will end
up with a working game, I write to Cathryn Mataga to request
her blessing for a release. As I know that she continued to use
the Shamus franchise on modern platforms and released the
last game only a few years ago, I'd really feel better not to
publish this against her wishes.

My playtesting setup is as follows: the Action! converter util-
ity is running on Atari800MacX. I read the disk image with
Omnivore (which is also good for a quick check of map data)
and use Omnivore to save the Atari map file to my WUDSN
Eclipse workspace. From there it is compiled into an Atari ex-
ecutable that I load with Altirra (running under WINE). An
x64 window next to Altirra allows immediate comparison of
original and cloned levels. It is even possible to move Shamus
on both emulators with the same joystick, but as the C64
Shamus runs much slower and does not speed up on higher
levels they will not run in sync.

For testing I simply move both Shamus(es?) through the maze
from left to right and check for differences in rooms and ob-
jects.

I soon literally run into another obstacle. I have not given any
thought to how the placement of the “door” in keyhole rooms
is decided. Depending on the maze layout either the left or

11

256 vs. 16

Next level?

right exit of a chamber with a keyhole remains closed until the
correct key is presented. A little comparison between known
door rooms shows this to be encoded in bit 4 of the color byte
on the Atari and in bits 6/7 of the color byte on the C64. A
simple AND $10 to the Atari color byte should shift the door
if required. Only it doesn’t work. Door rooms inexplicably
show completely different color data. After some hair pulling
and head scratching I realize the color variable my converter
uses for the AND is an index to a 16-byte array that contains
an Atari color value for every C64 color. Adding $10 to the
index has it fetch meaningless data from somewhere behind
that array.

While troubleshooting I somehow manage to delete an ELSEIF
without breaking compilation, resulting in another bout of de-
bugging. Somehow I envy the guys who code complete games
in an afternoon or at least during a demo party.

Further travels through the maze show that object color needs
a bit more tweaking. With four out of 16 C64 colors (black,
white, light grey, dark grey) represented by the same hue
(chroma) on the Atari and only luma different, using a fixed
luma of $06 will not work. As it would be quite shameful not
to recreate the C64 colors on a machine that prides itself on
having 16 times as many, I need to patch the color code (which
I luckily located while working out maze coding) to allow en-
coding of both luma and chroma. Again a JSR is patched into
the original code.

As I don’t want to redo the code that checks “door bit” #4, 1
decide to keep the “inverted” color setup, stuff luma in the high
nibble and reverse them at runtime. (As luma does not use the
lowest bit, this leaves the door position encoding undisturbed.)
For some reason original Atari maze objects look quite dark
now and I realize that I need to change the original Atari map
data accordingly while it is copied during game initialization,
otherwise all objects have a luma value of zero.

On to further room-by-room checking. Level boundaries do
change from map to map on the C64, so they need to be stored
somewhere. I make notes of the rooms that are level bound-
aries and a memory hunt for those three numbers comes up
with a table containing them for every maze. Hunting for the
same bytes on the Atari is without result, so I decrease them
by one and Bingo! I decide that 124 pod rooms should be suf-
ficient and put the three “level boundaries” - decreased by one
from the C64 to the Atari - into the last three bytes of map
segment five. (I could have patched it right into the maze se-

12

Broken rooms?

New Corridors!

A black swan?

lect routine as well but decide to store it in map data to allow
for eventual loading for further maps.)

Action still keeps crashing on me and zapping code. I suspect
that my long arrays eat up too much memory and re-write the
code to load and convert one maze at a time.

Further testing reveals a seemingly “broken” room which is
impassable. As it is blocked off in another copy of C64 shamus
as well, I check a map of the level and find that it’s just a clever
maze design my converter handled correctly. Different colors
for 7 and potion bottles on the blue, green and red levels are
handled with a little more code.

Re-writing the Action! converter takes longer than expected
as I inadvertently save a “zapped” source code that is barely
longer than the visible screen and have to re-do changes from
a previous version, hopefully resulting in cleaner code. It also
unearthes a bug caused by a wrong variable declaration in
the corridor conversion function. That bug had prevented the
function from returning $FF for unknown corridor configura-
tions and I suddenly find that some C64 mazes use corridors
which do not translate into Atari codes. I briefly consider
patching the Atari maze engine but quickly realize that I have
no clue how it works. Players will have to make do with “func-
tional equivalents”, rooms walled off to simulate right and left
“dead ends”. Vertical T junctions used in one maze have to
be replaced by angled corridors at the expense of making the
maze layout a bit less mysterious (the C64 layout loops back
onto itself thanks to up- and downward exits leading to the
same room). Fortunately there is no vertical corridor which
no kind of trickery could simulate.

Before I return to testing the remaining mazes room by room,
I start writing what is to become this document. Returning to
testing that turns out to have been a bit premature, as I come
across a room that should not exist. I had incorrectly assumed
that all pod rooms are empty, as they are on the Atari. What
I had considered an automatism that removed internal walls
from pod rooms on the C64 had just been a wrong conclusion
of sloppy testing. Fortunately the Atari can display pod rooms
with internal walls, so just a little change to the converter does
the trick. (The spacing of the pod room barriers on the C64
is a bit different though, as they obscure the vertical walls on
the Atari.)

Testing also reveals that I need to either completely rewrite
or disable the bonus object shuffle routine as it moves bonus

13

Fixing an old bug

Speed up? - speed
down!

A tournament anyone?

objects into corridors in some C64 mazes. Fixing this would
require mapping all C64 mazes in order to shuffle objects be-
tween chambers only. As I might want to play those mazes
without knowing them by heart, and as the C64 game does
not shuffle objects at all, I decide to simply disable this for the
C64 mazes.

By now my code works! There seems to be a bug in the original
game, however. The Atari version of Shamus increases the
speed of the game with higher difficulty settings as well as
higher levels. (This is done by decreasing $0206 which controls
how often code starting at $2F98 runs a simple loop of the Y
register from $FF to $00. The value in $0206 is decreased by
2 for every difficulty level and by 1 for every level in the maze.
NOVICE will have $07 at $0206, when making it to blue level
it will drop to $06, etc.)

The problem with this is that any decrease below 0 will slow
down the game so much as to make it unplayable (this causes
the inner Y loop to run 255 times for a total of 65535 loops).

In order to notice that you have to either start at “ADVANCED”
and make it to the red level or start at “EXPERT” and make

it to the blue level. (I don’t think I ever played the game
beyond “NOVICE” level.)

While the code that needs fixing is not time-critical as it is
executed during level changes only, actually fixing it turns out
to be complicated. My first idea is to simply prevent the value
in $0206 from dropping below 1 (and maybe allowing for a
gentle increase in game speed by reducing the $FF in the inner
loop.)

As it is possible to return to lower levels within the game,
that value can increase as well and so I would need a major
re-write to change the whole "speed setting” code to keep it
from increasing that value (but maybe change back the inner
loop to FF) when returning to a lower level.®

As fixing the speed bug led me to the “end of maze” code
(which also changes speed) the idea of a “tournament mode”
comes along. A “thumbs up” on AtariAge later I start coding.
While tournament turns out to be an easy patch, it makes
display of the current maze (almost) a necessity rather than a
nice to have feature. I remember the ANTIC jump instruction

8 just “cutting off” values below zero would slow the game down on re-
turning to a lower level even if the speed-up when entering the higher
level was nixed by the cut-off routine.

14

Time for a pause

which allows for easier patching of display lists and replace the
jump at the end of the original list with a jump to my display
list patch which after displaying the newly inserted lines jumps
back to the original list.

After much trial and error I find a simple solution for the speed
bug. I allow the speed value to go up and down freely and
even drop below zero but patch the delay loop code itself to
ignore speed values below zero (a patch made super easy by a
superfluous CMP instruction that can be conveniently replaced
by a branch out of the loop for negative values).

Not that it was likely someone would ever play Shamus long
enough to run across those bugs, but releasing my favorite
game with known bugs...?

Playing five mazes in a row without a pause might be a bit
tough, and I'm quite sure that Shamus’ lack of a pause function
is not intended to increase difficulty but rather owed to its early
release date.

Pausing requires some way to detect keyboard input, either
by watching keys during vertical blank or by using keyboard
interrupt code. First experiments are not very encouraging
until I find out that the vertical blank vector addresses are
used to store game variables. So I need to “redirect” all game
use of them to a safe spot. While this works, it causes a strange
“discoloration” of the game until I realize that I should not
return to SYSVBV but rather XITVBV after my VBI to prevent
SYSVBV from copying all kinds of random data from repurposed
shadow registers.

Pausing is rather easy, with a new “Pause” display list shutting
down the display list interrupt-based game mechanics as well.
Unpausing turns out to be a lot trickier. I can’t seem to get
rid of the original keystroke whatever I try. I finally settle on
checking for “fire” rather than another keystroke to end the
pause.

As T am a bit concerned about VBI code stealing at least 71
cycles? during every VBI, I try to start the pause routine with
a keyboard interrupt. This fails because of an inexplicable per-
severance of the interrupt that re-pauses the game whenever
I unpause it, regardless of my attempts to clear the interrupt
by writing to IRQEN and SKRES.

As there is no obvious way to correct for the 71 extra cycles,

9 Most of that is used by the system VBI code.

15

Maps

Even more maps?

Enjoy!

Shamus+ will be a teeny weeny little bit slower than the orig-
inal. 10

While a Shamus: Case Il-like map (showing completed parts
of the maze only, of course) would be a nice addition and has
indeed been requested on AtariAge, it is not that easy to im-
plement. As the maze encoding allows for coding of “twisted”
and “stretched” mazes with geometries that could not exist in
the real world, automatic mapping will not work for all possi-
ble mazes. While I could “hand-map” existing levels this would
not work with a possible future (preferably “third-party”) map
editor and besides, I still might want to actually play the C64
levels.

For the time I’ll follow a forum opinion that mapping (or mem-
orizing) the mazes is part of the game. A map mode will have
to wait until an eventual V 2.0.

I briefly consider adding mazes from other versions of the
game. The VIC-20 maps are quite different from the Atari
and C64 maps, however.!’ Chambers can have top and bot-
tom exits, requiring a re-write of the game engine for use on
the Atari. The CoCo and TI-99 versions look like the original.
While googling for maps I read that the PC (DOS) version of
Shamus has yet another maze layout. Does that mean I’ll have
to learn 8088 assembly? Another “to do” for a future update.

Thanks for bearing with me. The following chapter explains
how the maps are coded on the C64 and Atari and explains the
expanded Atari map format I used to encode the C64 mazes
on the Atari. It is required reading if you plan to write a map
editor (nudge, nudge) or want to code a new maze yourself. If
you don’t plan to do either, just go ahead and enjoy the best
274 person shooter you’ll find on the Atari.

10 the code will execute for about 2 1/2 thousands of a second on an NTSC
system, which equals approximately 1/4 of a percent of slowdown.
11 a5 observed on YouTube

16

Shamus Maze Coding

Terminology

Chambers

Figure 1:
Atari maze room 0

This description is based on the “Homesoft” file version'? of
Shamus (chosen because of the fixed Synapse title music bug)
and several cracked versions of C64 Shamus which seem to be
identical except for the “Trainer” screens. It is provided with-
out any guarantee whatsoever except that it probably contains
errors based on wrong deductions.

“Chambers” are wide rooms with a left and right exit which
may have some interior walls. The interior walls are laid out
along a grid resembling a # with each line having having three
parts.

|
|
|
i

=W
I
I .

.

12 The ROM version uses different memory locations, including those for
game variables.

Corridors “Corridors” are smaller passages with more “fill” around the
walkable part. The walls conform to the same grid as described
above:

Figure 2: C64 “Original”
magze room 1

ROOM: L L: BlLHCH
HAF: OARIGTHAL HOVICE

Pod Rooms “Pod rooms” are chambers witheut—interior—wals containing
vertically moving barriers with a small horizontal slit that the
player must shoot through and hit the bonus object in the
center of the pod room to open the barriers and continue.

Figure 3:
Atari pod room 18

1
#
#

i

|TIIIIIIIIIIIIII

(o

M

18

Level

Maze

Segment

Object

C64 encoding

Bits

“Level” comprises all rooms within a maze that have the same
color. On the Atari the screen background is colored according
to the level while on the C64 the maze walls indicate the color.
In addition the current level is spelled out on the lower right
of the screen for both versions.

A “maze” comprises 128 rooms numbered from 0 to 127 ($00
to $7F). The Atari has only one maze while the C64 has five.

“Segment” refers to a 128 byte long table, with byte 0 referring
to room 0, etc.'

“Objects” refer to the items found in the maze and comprise

potions (extra lives), mystery bonuses (?), keys, keyholes and
the Shadow.

Bit numbering is from 0 for the least significant bit to 7 for
the most significant bit, with bits 0-3 referred to as the “lower
nibble” and bits 4-7 as the higher nibble.

The main part of the levels is coded in three segments of
128 /%80 contiguous bytes each and located as follows:

Original Holmes Cluseau Marlowe Bond

$610D $628D $640D $658D $670D

When choosing a maze using [F3] $15/16 are changed to point
to the selected maze and when starting a game with [F7] the
maze data is copied to $7000-$717F.

Tables with five bytes'* each indicate the first rooms of the
blue, green and red levels for every masze:

table for blue level green level red level
starts at $60FE $6103 $6108

Original $26 38 $43 67 $5D 93
Holmes $2B 43 $47 71 $66 102

Cluseau $26 38 $4C 76 $73 115
Marlowe $1C 28 $3E 62 $68 104
Bond $1D 29 $38 56 $6A 106

13 with the exception of segment 5
14 $60FE contains the first blue room for the “Original” maze, $60FF for
Holmes, etc.

19

Segment 1

Bits 2-7 encode the horizontal walls with a set bit generating a
wall and a zero bit leaving out the respective part of the wall.
Room 0 shown above therefore would therefore have a code
of %01010000 or $50 and room 1 has a code of %11110100 or
$F4.

Bits 0 and 1 encode objects which upon entering a room will
be randomly placed at any of the 9 positions seperated by the
grid shown above:

$00 no object

$01 potion (extra life)

$02 mystery bonus (?)

$03 key (If bit 7 of segment 3 is set as well this denotes a lock)

Segment 2

Bits 2-7 encode the vertical walls with a set bit generating a
wall and a zero bit leaving out the respective part of the wall.
Room 0 shown above therefore would therefore have a code
of %01001000 or $48 and room 1 has a code of %00100100 or

$24.
7 4
I
6 3
e
5 2

If bits 0 and 1 are set the room is a pod room. Coding a pod
room without an object will likely result in the room being
impassable because the moving barrier only seems to disappear
when hitting the object.

If bit 0 is not set, the room will be a corridor. The shape of the
corridor will be determined by the enclosing walls as encoded
in bits 2-7 of segment 1 and 2.

20

Figure 4:
Segment 1: $00
Segment 2: $00

ROOH: L
HAF: OARIGTHAL

The center of the corridor is always present, even if all relevant
bits are zeroed. Note that object coding still works but random
placement may result in objects placed within the solid part
of the maze.

Any walls that do not enclose this center area will cause
another part of the corridor to be “cleared” and open up a
passageway in that direction. Note that this can result in
“open” corridors which are not fully enclosed within electro-
cuting maze walls. Contact with the solid part of the maze
will nevertheless kill the Shamus (apparently a player-playfield
collision).

21

Figure 5:
Segment 1: $20
Segment 2: $00

NNNNNNN NN RS
X

n—l

ROOH: L
HAF: OARIGTHAL

This allows for flexible coding of corridors but also allows to
code corridors that cannot be coded on the Atari.

Figure 6:
Segment 1: $B4
Segment 2: $B4

ROOH: L
HAF: OARIGTHAL

22

‘The following ‘non-Atari” corridors are used in the C64 game:

|.|i|'|'|’|.§'|’|(§é f?é fﬁ
R o
il 4
e
(R
T

SR

2
2
2

5
ST AT
R

T
i
o

Y
o
NN N NG

P
L2

Y

e
LXLEXELEPIY N

A

e

T A AT A A AT
A

SNEAATATAT

o
N

i

e]
AN I,
agon. s LeveL: peen
AR uBEnes wEBEEY

R

ST

STATATATATAT
17

g
VNN NG

AT ATATATATATAY

G

s
5
G

5

¥

%

v
G

a
-

&
oo
o
jog
s
ﬁ
oo

2
i
2
&
[
<
i
=2
&

[

|
ok

E
I
i
g

AoEn: aim LEVEL: pER

aogn: 23 LEvEL: BAck
RABY whilies hiulER

g
I
z

By

RABY nitnes wibEEE

$FC-300

$90-$BC

Segment 3

Vertical Connections For corridor rooms'® the lower 7 bits contain the room number
of the vertically connecting room. As there is only one number,
Shamus will arrive at the same room regardless of whether he
leaves a room through the top or bottom exit.'® This can
point to any room in the game but will result in instant death
when leading to a room without a corresponding passage, e.g.
entering a chamber from above or below or entering a corridor
without a passage at the side of entry'”. As there are no
restrictions to the selection of connecting rooms it is possible
to construct “twisted mazes” as well as mazes were returning
through the entrance will lead to another room than the one
Shamus came from. (This might make it hard if not impossible
to program a WYSIWYG maze editor.)

Keys and Locks Bit 7, unused by the 7-bit room number, is a flag that will
change a key object into a lock object when set. Chambers
with locks have the right exit closed when bit 6 is zero and the
left exit closed when bit 6 is one. The respective exit will open
when the Shamus touches the lock and has a matching key in
his inventory. While obviously intended for use in chambers,
the encoding mechanism works for corridors as well.'® As the
random object placement may result in the lock being hidden
in the solid part of maze, the player would have to exit and
return to the room repeatedly in order to be able to unlock
and open the door.

15 The game engine actually does not care whether a room is a corridor
room or a chamber but without disabling collision detection it is not
possible to leave a chamber vertically.

16 This seems to be a remnant of the Atari maze layout which does not
contain any rooms with both top and bottom exits. Using rooms with
top and bottom exits will result in mazes looping back onto themselves
that are harder to map but playable.

17 As Shamus will continue to respawn at the point of entry to the room,
this will almost instantaneously wipe out all remaining lives.

18 Bit 6 would still be used for the vertical connection info in this case.

23

C64 color Atari C64 color Atari C64 color Atari C64 color Atari
$00 black $00 $04 purple $58 $08 orange $18 $0C grey $0A
$01 white $O0E $05 green $BA $09 brown $E6 $0D 1. green $BE
$02 red $26 $06 blue $74 $0A 1. red $2A $0E L blue $7A
$03 cyan $9C $07 yellow $ES8 $0B d. grey $06 $0F 1. grey $0C
16 colors The lower nibble of segment 3 contains color information for
keys and locks. This is coded with the standard C64 color
palette (equivalent Atari colors are shown).
Potions (extra lives) and mystery bonus (?) objects have a
fixed color for every level:
Level Mystery Bonus Potion
black $04 violet $0D light green
blue $04 violet $OE light blue
green 305 green $09 brown
red $08 orange $09 brown
Atari
The Atari file format is based on the different method of stor-
ing the map in the Atari version of Shamus. It consists of 5
segments of 128/$80 bytes each, stored contiguously for a file
size of 5x640=3200 bytes.
Segment 1

This is stored at $23F2 to $2471. Bits 0-5 encode the hor-
izontal walls with a bit set generating a wall and a zero bit
leaving out the respective part of the wall. Room 0 shown
above therefore would therefore have a code of %00001010 or
$0A.

If bit 7 is set the room is a corridor room and bits 4 to 6 control
the type of corridor according to the table below.'® Equivalent
C64 segment 1/2 coding is listed.

19 Corridor type $CO is not used in the original Atari maze.

24

EX TS

VL

=3

=
(R ERRNRERN A RN

=

$80 $90 $A0 $B0
dead end open bottom to right bottom to left T with bottom
at bottom angled corridor angled corridor exit
C64: $40/%6C C64: $64/%64 C64: $D0/$2C C64: $F4/%24

S

$CO $DO
dead end open top to right top to left : .
at top angled corridor angled corridor T with top exit
C64: $08/$D8 C64: $2C/$DO C64: $98/%98 C64: $BC/$90

Segment 2

Segment 3

This is stored at $2472 to $24F1. Bits 0-5 encode the vertical
walls with a bit set generating a wall and a zero bit leaving out
the respective part of the wall. Room 0 shown above therefore
would therefore have a code of %00010010 or $12.

0 3
e
1 4
e
2 5

For corridor rooms?, this contains the number of the vertically
connecting room.

This is stored to $1D43 to $1DC2 and is used to encode objects
as follows:

20 as on the C64, this works regardless of room type with normal rooms

preventing exit at the top and bottom unless collision detection is dis-
abled.

25

Segment 4

Segment 5

$00 mno object

$01 keyhole (equivalent to C64 lock)
$02 key

$03 mystery bonus (7)

$04 potion (extra life)

$06 Shadow

The actual location of some objects on every level is randomly
swapped by code at $18AF when starting a new game.

This is stored to $1DC3 to $1E42 and stores the color of ob-
jects. The normal Atari color code is stored in the lower nib-
ble. In the original Atari maze all objects are assigned a luma
(brightness) of 6 by shifting the value from this segment up 4
bits and ANDing $06.

As the Atari and the C64 use different color palettes and sev-
eral C64 colors (black, white and three shades of grey) are
represented by one Atari color with different brightness val-
ues, an extension of the original format is required to encode

C64-like colors.?!

The luma value is therefore stored in bits 5-7 and the Atari
game code is patched to “rotate” the color byte at runtime and
use it as a normal Atari color value.

While it might appear easier to use “real” Atari color values
right away, this is not done because bit 4 is used to encode the
position of the door in chambers with keyholes. If bit 4 is set,
the left exit is closed, a cleared bit 4 closes the right exit. (As
the lowest bit of Atari color values is not used, its presence
does not change the color when the two nibbles of the color
byte are exchanged.

The original Atari maze data is converted to this format during
game initialization, with all colors coded with a brightness
value of $06.

This segment is used to store information that is not encoded
in the “main” map segments described above but rather stored
within the game executable code and/or uses a completely

21 Failure to at least attempt this would be quite shameful for a program-
mer taking pride in using a computer that has a color palette 16 times
as varied as that of the C64.

26

different system of encoding on both machines. It does not
correspond to “native” storage of the Atari version.

Byte 0 of segment 5 is a count of the number of pod rooms
in the maze.?? The following bytes contain the room numbers
of the pod rooms. The Atari does not store “pod room” as a
property of a room in a list indexed by room number but has
a separate list of pod rooms, stored at $1EE3 to $1EEA which
is checked by code at $1FEE whenever a new room is entered.
This code is modified as follows: The number of pod rooms
from byte 0 is patched to $1FEF and the address of the pod
room list is patched to $1FF6//1FF7.

The last three bytes ($7D-$7F) store the level boundaries.
While the C64 encodes this as the first room of the higher
level the Atari stores the last room of the lower level, so these

numbers are one lower than the corresponding C64 boundaries.
These are patched to $2F48 to $2F4A.

22 This is one higher than the number of pod rooms in the converted C64
maze, with the extra room being room 127. In C64 Shamus the Shadow
always appears in the middle of room 127 while on the Atari that room
needs to be a pod room to allow the player to finish the maze.

27

Various Notes:

Moving through the maze

Shamus strategies

Leaving a room to the left will put Shamus in the room with
the next lower number while leaving it to the right will send
him to the room with the next higher number. That means
leaving room 25 to the left will always lead to room 24 and
to the right to room 26. Whether those rooms are actually
located side-by-side on the map doesn’t matter as the electro-
cuting walls will prevent any progress outside the maze (unless
collision detection is turned off, that is). Up/down movement
is coded as described above.

Finish off as many enemies as possible from the entrance to
the room and check the patterns of those you can’t reach from
there. Stand still, hold down the trigger and tap the joy-
stick for rapid shooting. (This is easier with a joystick with
short throw. My absolute favorite for this is the Suncom TAC-
II.) Then advance and finish off the remaining enemies (if re-
quired). If shot at, running back to the previous room is often
easier than dodging bullets in a small corridor and might be
your only choice when several bullets approach. Be aware that
Shamus will speed up on the Atari once you've killed all ene-
mies. More than once that had me running into a wall.

Differences between Atari and C642° versions:

Disclaimer

Some of this might be a matter of personal preference.

e Where the Atari has nice, glowing (pulsating) walls - es-
pecially on a real CRT - the C64 walls look a lot cleaner
with their alternating of white and the level color. The
“wallpaper” (solid part of the maze) around is a much
brighter yellow, altogether giving the Atari a darker,
more “space dungeony” feeling. (To me the C64 maze
looks too bright and friendly.)?*

23 as played on the VICE x64 emulator.
24T am used to the PAL version. The NTSC version looks a bit brighter
as well.

The same goes for the robots which have gloomier colors
on the Atari.

Atari ION-SHIVs can kill enemies through walls (when
the enemy touches the wall) which doesn’t work on the
C64.

ION-SHIV graphics look a bit more elaborate on the
Atari, ION-SHIVs are larger compared to the player.

The C64 has a “splash” animation for ION-SHIVs hitting
something though.

Enemy shots have a (“ping”) sound on the Atari but are
silent on the C64.

The Atari version plays some background sound during
gameplay and a “warning” sound a short time before the
Shamus actually approaches.

While the Atari Shamus has a small gap between hat
and head that is big enough for shots to pass through,
the C64 Shamus is “solid”, making it harder to dodge
bullets.

The C64 Shamus and Shadow seems to be a bit taller
compared to the maze than on the Atari.

On the Atari the keys, keyholes and bonuses disappear
when the Shadow appears (probably because they use
the same player) while they stay on the C64.

At least on the emulated C64 the Shamus can be seen
stationary for a couple of seconds before it moves towards
the player while it starts moving right away on the Atari.

Snap Jumpers and Robo Droids seem to be one color
only on the C64.

I am not entirely sure but some of the enemy patterns
look different on the C64 (although I have not played
that version long enough to be certain).

The C64 enemies seem to shoot each other less than
those on the Atari.

The Atari Shamus walks faster than the C64 Shamus
and speeds up on every new level and at higher difficulty
settings. The C64 Shamus seems to keep a constant
speed throughout the game.

The Atari Shamus walks faster after a room has been
cleared of enemies.

29

e On average there seem to be fewer enemies in the C64
game.

e When finishing off the Shamus in room 127 the Atari
game increases the difficulty and loops back to room 1.
The C64 games shows a long scrolling text at the end
and then drops the player back to the game menu.

e When Shamus loses a life the whole screen flashes on the
C64 while only Shamus flashes on the Atari.

e The Atari swaps some bonus objects around every time
a new game is started is loaded®®, the C64 doesn’t.

e The C64 version has extra maps ;-)

25 this is performed by code at $18AF and affects rooms stored from
$18F6 to $18FD. As this does not work on C64 mazes which have a
corridor where this routine expects a chamber, this is disabled when
playing C64 mazes on the Atari.

30

Speed

Shamus speed on the Atari is controlled by the value in $0206.
It controls how often a delay loop at $2F98 counting from $FF
to zero is executed. It is set to $07 when starting in NOVICE
and 2 less per higher difficulty setting, i.e. $01 for EXPERT
mode. It is decreased by 1 when advancing a level and in-
creased 1 when returning to the previous level. When complet-
ing a maze it is set to 2(3 — number of finished mazes) + 2
by code at $2B6B.

While the speed setting code does not allow the value of $0206
to drop below zero the delay loop will execute FFxFF times
if it drops to zero. The game becomes basically unplayable
then.

I have “fixed” this by ending the delay loop after one $FF-
$00 iteration when $0206 is zero or less.? While the (useless)
“don’t drop below $00” logic at $1FOF prevents speed from
dropping below zero, it will still increase the speed value (thus
slowing Shamus) when returning to the previous level. So if
Shamus enters a level at speed 0, speed will remain at zero
for the new level but increase to one when returning to the
previous level, making him slower than he was initially. As
I consider this an anomaly I have “fixed” it by dropping the
check for negative speed during speed adjustment.

26 “less” meaning $80 to $FF, i.e. a number causing the N flag to be set.

Conversion

New Corridors

The C64 map data from $610D to $688E is saved to a binary
raw data file (in this case called SHAM_C64.MAP).

This map data file is processed by an Action! program called
SHAMCONB.ACT which saves an Atari map data file named
SHAM_A8.MAP which is saved as SHAM_A8.MAP.dat and in-
serted into the patched binary for the Atari.

Corridor shapes not available on the Atari are replaced by
an approximation. “Dead End” corridors and horizontal corri-
dors are replaced with chambers that are walled off to create
a dead end (which will have some enemies in walled off ar-
eas, making it impossible to “clear” the level and speed up the
Shamus). “T” shaped corridors with up/down exits (Holmes
rooms 75/76) are replaced by “L” shaped corridors which con-
nect to each other vertically and allow to connect to rooms 74
and 77 horizontally (which will make the maze easier to map
as possible confusion by rooms looping back on each other is
removed).

Acknowledgements

Special thanks to the authors of all the utilities used in the cre-
ation of this patch, especially phaeron for Altirra, David Firth
for Atari800MacX, Peter Dell for WUDSN, Rob McMullen for
Omnivore, the VICE team members for x64, Clinton Parker
& JAC! for Action!, samar productions for C64Debugger.

Thanks to Al for AtariAge, without which using an Atari in
2017 would be much harder and to all who answered my ques-
tions or provided moral support by following and even liking
my progress.

Thanks to my family who endured my staring at a 40-column
screen and occasional sighs during quite some time.

And finally, thanks to all the Atari podcasters who keep the
Atari world alive in a new medium.

KTEX and the Atari

Version History

While my profession does not result in a lot of written output,
I have enjoyed dabbling with IXTEX since the 1990s, when I
first used it on my Atari ST. I simply like the aesthetics of
Computer Modern fonts and the inimitable style of documents
typeset using the TEX system. I always wanted to use the
refman /refart /refrep type of document but never before had
to write anything requiring it. This is my first attempt at
using it.

This is version 1.01 of this document, correcting several typos
and a wrong filename in the Conversion section.

