
Monarch Data Systems

P.O. Box 207, Cochituate, Massachusetts 01778

Monarch Data Systems

ABC
A BASIC Compiler for Atari® Computers

Reference Manual

ABC
A BASIC Compiler

for Atari Computer Systems

Version 1.0

P.0.
Monarch Data

Box 207, Cochituate,

Systems

Massachusetts 01778

Program, documentation and packaging

Copyright (C) 1982, 1983 Monarch Data Systems
All rights reserved

Unauthorized duplication prohibited

"Atari" is a registered trademark of Atari, Inc.

Contents Section 1

Introduction

Section 1 Introduction 3

1.1 How Does It Work? 3

1.2 System Requirements 4

1.3 Distributing Your Compiled Software 4

1.4 Contents Of This Package 4

1.5 Purpose Of This Manual 5

1.6 References 5

Sec tion 2 Making A Working Copy 5

Section 3 Compi ling A BASIC Program 6

Sec tion 4 BASIC Programming Considerations 8

4.1 Integer Arithmetic 8

4.2 Unsupported Functions 8

4.3 Simulating Floating-Point Numbers 9

4.4 Simulating The RND() Function 9

4.5 Simulating Trigonometric Functions 10

4.6 Limited Size Of Constants 11

4.7 Order Of Operations 12

4.8 Unsupported Arithmetic Operators 12

4.9 Unsupported BASIC Statements 13

4.10 Break Key Handling 13

4.11 Subroutines And FOR/NEXT Loops 13

4.12 Arrays And Strings 14

4.13 Timing Loops 14

Sec tion 5 Advanced Usage 15

5.1 Changing The Load Address 15

5.2 Generating Relocatable Code 16

Section 6 Technical Notes 17

6.1 Error Checking 17

6.2 Low Memory Usage 17

6.3 Memory Allocation 17

Section 7 Error Handling 18

7.1 Compilation Errors 18

7.2 Illegal Statement Messages 19

7.3 Illegal Function Messages 19

7.4 Run-Time Errors And Program Termination 19

ABC is a software development tool designed to improve the
performance of your Atari BASIC programs. It lets you enjoy

the high speed and memory efficiency of compiled languages like

FORTH and C, without leaving the familiar environment of your

BASIC cartridge.

1.1 How Does It Work?

ABC stands for "A Basic Compiler.” A compiler is a program

that accepts source code (your BASIC program) and translates it
into another form, in this case a compact pseudo-code or
P-code. Once compiled, this P-code can be executed by another
program called a run-time interpreter. Both a compiler and an
interpreter are included on your ABC disk.

To compile a BASIC program with ABC, you must first SAVE the
BASIC program on a disk. The ABC compiler reads your BASIC
program off the disk and translates it into P-code, one line at

a time. Then it permanently links a copy of the ABC
interpreter to the P-code, and saves the compiled program as a
binary disk file which can be loaded and executed like a

machine-language program. The BASIC source file is unaffected.

The benefits of using ABC include:

Faster execution speed. ABC-compiled programs run from four to
twelve times faster than the original BASIC version, depending
on the source code. This makes it possible to use Atari BASIC
for professional game development and other speed-critical

applications.

Greater memory efficiency. The P-code produced by ABC is
considerably more compact than tokenized BASIC. Numbers are
stored in three bytes instead of the six required by the Atari
floating-point routines. Additionally, the ABC interpreter
requires only 4K of memory, about half that used by the BASIC
cartridge. The result is a compiled program that requires much

less memory overhead than the original BASIC version.

Non-cartridge environment. Compiled programs can be run
without the BASIC cartridge! This allows access to the upper
8K of memory in a 48K system, which is normally de-selected by

the cartridge.

-3-

1.5 Purpose 0f This Manual Source code protection. ABC P-code is a compressed and encoded

version of the original source program which is very difficult
to understand without detailed knowledge of the ABC run-time
interpreter. For this reason, a BASIC program processed by ABC
cannot be listed or disassembled and is extremely hard to
"break."

1.2 System Requirements

To use the ABC software, your Atari computer system must
include a minimum of 40K memory and at least one disk drive.

You must also have the Atari Disk Operating System, DOS 2.OS,
to create your working copy of the ABC disk.

The memory required to run a compiled program depends on the
size of the original BASIC source code, and may be little as
16K bytes.

1.3 Distributing Your Compiled Software

No royalties or licensing fees are required to distribute
software processed by ABC. However, we do require that your
software bears the following notice:

"Produced using copyrighted software products of Monarch Data
Systems, Cochituate, MA 01778."

Display the notice prominently on either the program title
screen or in the documentation provided with the product.
Failure to reproduce this notice may constitute a copyright
infringement,

1.4 Contents Of This Package

Your ABC package should contain:

A disk containing the ABC compiler, run-time interpreter
and a relocation utility;

— A label for your working copy of the ABC disk;
This reference manual, and;

— A user registration form.

Please take the time to fill out and return the registration
form. This will enable us to supply you with revisions and
enhancements to the ABC system, and to keep you informed of new
products as they become available.

The ABC Reference Manual is intended to show you how to operate
your ABC software. You should already be familiar with Atari
BASIC programming and with Atari DOS 2.OS.

1.6 References

The following reference documents are published by Atari.

Atari BASIC Reference Manual (CO14722)
Atari Disk Operating System II Reference Manual (CO16347)

Atari Technical Reference Notes (CO16355)

Section 2

Making A Working Copy

You will get a "BOOT ERROR" message if you try to boot your
original ABC disk. The reason is that the original disk does
not include a copy of DOS 2.OS. To obtain an operational
version of ABC, you must first make a "working copy" of the
original disk and write new DOS files on it so it will boot.

Never remove the write-protect tab from your original ABC
disk. This will help prevent accidental damage to the software.

Use the following procedure to make a working copy of ABC:

a. Remove all cartridges from your computer.
b. Boot a disk containing Atari DOS 2.OS. When the menu

appears, insert a blank disk into your drive and use option
"I” to format the disk.

c. Insert your original ABC disk and select DOS option "J" to
copy it onto the freshly formatted disk. When the
duplication is completed, remove the original ABC disk and
store it in a safe place.

d. Select DOS option "H" to write the Atari DOS files onto
your working copy of ABC. Then remove the copy and put a
write-protect tab on it to avoid accidents.

e. Your working copy of ABC must bear a Monarch Data Systems
copyright notice. A pre-printed disk label with the

appropriate notice is included in your ABC package.

-4 -5-

We chose not to copy-protect your original ABC disk so that you

would be able to back it up conveniently. In return for our
consideration, we ask you not to duplicate or distribute the

ABC software in any form except for the sole purpose of

creating a single working copy for your personal use. Any
other duplication or distribution of the ABC software is a

violation of Federal copyright laws.

Section 3

Compiling A BASIC Program

A compiled program can only be as good as the original BASIC

source. If your BASIC code has bugs in it, ABC will faithfully
translate the bugs into P-code, resulting in incorrect
operation at best and a total system crash at worst. Then

you’ll have to return to your BASIC source, track down the bugs
and re-compile. Always make sure your BASIC program is working

properly before you try to compile it.

Once you're satisfied with your source code, SAVE it onto a

disk using a BASIC command in the form:

SAVE "Dl:PROGRAM.BAS"

Naturally, you can specify a different drive number if you
want, with any legal file name or extender. The ”.BAS”
extender is useful because it helps you tell the BASIC and
compiled versions of your programs apart.

The ABC compiler is supplied as an AUTORUN.SYS file that will
execute whenever your working copy is booted on Drive #1. Use
the following procedure to compile a SAVEd Atari BASIC program:

a. Remove all cartridges from your computer. Turn on Drive #1
and wait for the "BUSY” light to go out.

b. Insert your ABC working disk into Drive #1 and turn on the

computer.
c. The ABC title screen and copyright notice will appear on

your TV set or monitor. Approximately one second later,

the system will begin reading the ABC run-time interpreter

into memory.
d. When the interpreter is loaded, the program will ask you to

remove the ABC disk and insert the disk that contains your
SAVED Atari BASIC program.

e. ABC will next request the name of your BASIC source program
(the one you are compiling). Respond with a drive
specifier (Dl:, D2:, etc.) and the full file name,
including any extensions. A default drive specifier of
"Dl:” and a ".BAS" extension will be provided if they are
not supplied by you. If your filename has no extender,
include a trailing period ("PROGRAM.") to prevent ABC from

trying to add the ".BAS" extender.
f. You will now be asked to specify the name of the

destination file. This file will eventually become the
compiled version of your BASIC program. Again respond with
a drive spec ifer and a full file name. The defaults are

"Dl:" with a ".CMP" extender.
g. ABC will immediately open a new disk file with the name you

selected. It will then write a copy of the run-time
interpreter into the new file. A temporary "scratch pad"

file is also created on Drive #1 for ABC’s own use.
(NOTE: In single-drive systems, the destination file is
always written on the same disk as the source file. Make
sure the disk is not write-protected or you will get an

error message.)
h. The compiler now begins to scan your original BASIC

program. First, it displays the number of variables
(symbols) used in your program, followed by the total
number of program lines. Using this information, the
compiler proceeds to convert each BASIC line into P-code.
The progress of the compiler is indicated by displaying

every 25th line number of the BASIC program, with
intermediate lines represented by a single dot.

i. After a successful compilation, ABC will display a
"Compilation Completed" message. You will then be offered
a choice via the console switches of whether to re-run the
compiler (START), reboot the system (OPTION) or return to
DOS (SELECT). To run the program you just compiled, return
to DOS by pressing the SELECT key and use DOS option "L" to
load the destination file, which will begin executing

automatically.

-6-
-7-

Section 4

BASIC Programming Considerations

4 4.3 Simulating Floating-Point Numbers

To achieve the high speed and efficiency of the ABC system, it

was necessary t6 place a few limitations on the Atari BASIC
code that can be compiled. Most programmers will find that
these "limitations” aren’t very restricting at all — in fact,
they may actually help to improve your programs by making you
explore alternative methods of problem-solving.

4.1 Integer Arithmetic

Each constant and variable in an Atari BASIC program is stored
in floating-point format, using six bytes of binary-coded
decimal. Whenever you RUN a BASIC program, these numbers must
be translated back and forth from floating-point to "straight”
binary so that they can be used by the Atari operating system
ROM. This constant translating and the general "laziness" of
floating-point operations are the main reasons for the
notoriously slow speed of Atari BASIC.

ABC avoids the speed limitations of floating-point by using
only integer (whole number) arithmetic. Values are stored as
three bytes of "straight" binary, with a usable range of
approximately -8 million to +8 million.

Most Atari programs do not need floating point arithmetic.
Games, graphics and systems software rarely employ fractions or
complex mathematical functions. As a result, you may find that
many of your favorite BASIC programs can be compiled with
little or no alteration. And because of ABC’s wide usable
number range, it’s possible to simulate almost any
floating-point function using simple integer operators.

4.2 Unsupported Functions

Because ABC does not employ floating-point math, it will not
accept a BASIC program that contains any of the following
func tions:

ATN CLOG COS EXP LOG
RND SIN SQR

You can partially compensate for ABC's lack of floating-point
by scaling all of your intermediate results. For example, if

you multiply a number by 100 before performing a division, you
will obtain two significant digits after the "imaginary"
decimal point in your answer.

Suppose you need to divide 7 by 2, with an accuracy of two
significant digits. In regular Atari BASIC, this would be
coded as:

ANSWER = 7/2 (evaluates to 3.50)

In a BASIC program intended for compilation, you could use:

ANSWER = INT((7*100)/2)

which evaluates to 350 in both Atari and ABC-compiled BASIC.

This method is not intended as a substitute for the convenience
of automatic floating-point. But it should satisfy the limited
need for fractions in the majority of games and systems
programs.

4.4 Simulating The RND() Function

At first it may not seem obvious why RND() is included on the
list of unsupported functions. In Atari BASIC, RND() returns a
value that is less than one and greater than or equal to zero.
This value cannot be represented by a whole number, and
therefore requires floating-point. So if you need a random
number in your ABC program, you'll have to find a way to obtain
it without using RND().

Fortunately, the hardware provides a simple way to simulate the
RND() function. The Atari operating system is constantly
storing a new random integer between 0 and 255 into memory
location 53770. Almost any random value can be obtained by
PEEKing this location and scaling the result appropriately.

To illustrate the technique, let's assign the memory address
53770 to the variable RANDOM:

RANDOM = 53770

-8- -9-

Suppose your latest computer game needs a random value from 0
to 9, inclusive. You could obtain it with the following
expression:

VALUE = INT(PEEK(RANDOM)*10/256)

To obtain a value from 0 to 99 you could use:

VALUE = INT(PEEK(RANDOM)*100/256)

In the event that you want a random value greater than 255, you
will have to break up the number into groups of one or two
decimal digits. If, for instance, you need a value between 0
and 999, you could get the "hundreds” digit with:

HUNDS = INT(PEEK(RANDOM)*10/256)

Now get the tens and ones digits together:

OTHERS = INT(PEEK(RANDOM)*100/256)

Combine the results:

VALUE = HUNDS*100+OTHERS

and the variable VALUE will contain a random number between 0

and 999.

4.5 Simulati ric Functions

The simplest way to simulate an Atari BASIC trig function is to
prepare a look-up table. You can either enter the table values
in a DATA statement, use integer approximations to calculate

the values at run-time, or use Atari BASIC to compute the
values once and fill an array with the results.

The essential trick is to convert each table element to a whole
number by scaling it by an appropriate factor. If you need
accuracy to two significant digits, you would multiply by 100;
for three-digit accuracy, 1000, etc. Using the SIN() function

as an example:

VALUE = INT(1000*SIN(X))

Then SIN(0) becomes 0, SIN(45) becomes 707 (normally 0.707) and

SIN(90) becomes 1000 (normally 1).

-10-

Now, suppose you have prepared tables of scaled SIN and COS
values in arrays S() and C(), respectively, and you want to
draw a circle of radius R at center point X and Y. The
following instructions will accomplish this:

100 FOR I = 0 TO 359
110 PLOT X+R*S(I)/1000,Y+R*C(I)/1000
120 NEXT I

To generate a trig table at run-time you can make use of the
trigonometric identities:

sin(a+b) = sin(a)cos(b)+sin(b)cos(a)
cos(a+b) = cos(a)cos(b)-sin(a)sin(b)

By selecting the angle b as a constant and looking up its sine
and cosine, you can iterate through all the angles by the
increment of b and fill in an array with appropriately scaled
values.

4.6 Limited Size Of Constants

Although the range of variables that can be handled ABC exceeds
16 million, it cannot compile a BASIC program that contains a
constant larger than 65,535.

The blame again lies in the operating system. The Atari ROM
routines that convert binary-coded decimal to "straight" binary
only support numbers in the range from 0 to 65,535.

It's very easy to get around this limitation. As an example,
suppose your program uses a variable BIGNUM with a value of
250,000. In regular BASIC, you would assign this value with
the expression:

BIGNUM = 250000

ABC would disapprove of all those zeroes. But the expression:

BIGNUM = 250*1000

yields exactly the same result without making ABC unhappy.

-11-

Don't forget that the numbers in a DATA statement are not

regarded as constants. So you can also use the expressions:

100 READ BIGNUM
110 DATA 250000

and still satisfy both BASIC and ABC.

4.7 Order Of Operations

ABC handles division operations differently than Atari BASIC.
Consider the following example (constants are used as a
convenience):

X = INT(5/3*2)

The BASIC cartridge would first divide 5 by 3 (yielding a
result of 1.66), multiply by 2 (with a result of 3.32) and then
apply the INT function to obtain a final value of 3. But
because the ABC interpreter deals only with whole numbers, it
treats all division operations as an implicit INT(x/y)
function. This means that ABC would interpret the above
expression as:

X = INT(lNT(5/3)*2)

which evaluates to 2 instead of 3!

To make the above example work in both standard and compiled
BASIC, all that is needed is a simple inversion of terms:

X = INT(5*2/3)

This technique yields the desired result (3) in either case.

Division is the only ABC operation that does not conform to
Atari BASIC. Multiplication, addition and subtraction are
performed in the normal manner.

4.8 Unsupported Arithmetic Operators

Only one arithmetic operator is not supported by the ABC
compiler: the exponentiation operator "A." This operation is

easily simulated (with greater speed) by using sequential
multiplications.

4.9 Unsupported BASIC Statements

Once an Atari BASIC program has been translated into P-Code, it
cannot be accessed by the BASIC cartridge. For this reason,
compiled programs must not try to use the loading, saving and
editing functions supported by the cartridge. In addition,

because ABC does not employ floating-point math, the DEG and
RAD statements have no meaning to the interpreter,

ABC will not compile a BASIC program that contains any of the
following statements:

BYE CLOAD CONT CSAVE DEG
DOS ENTER LIST LOAD LPRINT
NEW RAD RUN SAVE

4.10 Break Key Handling

When you hit the BREAK key during the execution of a normal
Atari BASIC program, the program STOPs at the current line
number and returns to the cartridge for the READY prompt.

A compiled program has no cartridge to return to, so hitting
the BREAK key does not stop the program unless the key was
struck during an I/O operation. This forces an Error #128

(Break Key Abort) which, unless TRAPped, causes the program to
terminate.

You can avoid problems with the BREAK key by disabling it with
appropriate POKEs. Refer to the Atari Technical Reference
Notes for more information on controlling the BREAK key.

4.11 Subroutines And FOR/NEXT Loops

When using ABC, it's important to keep track of how you exit
subroutines and FOR/NEXT loops. In the following example:

100 FOR I = 1 TO 100
110 IF I = 50 THEN GOTO 130
120 NEXT I
130 PRINT "Loop aborted."

the lack of a POP statement would probably confuse ABC when the

loop index reached 50. The correct method is:

-12-
-13-

110 IF I = 30 THEN POP : GOTO 130

This is good programming practice even in a non-ABC environment.

The ABC interpreter is designed to handle no more than 64

outstanding GOSUBs and/or FOR/NEXT loops simultaneously. If

you manage to write a BASIC program that requires greater stack

depth than this, congratulations I

4.12 Arrays And Strings

ABC does not use the same memory allocation method for arrays

and strings as Atari BASIC. Consequently, programs that take

advantage of BASIC's array and string allocation structure will

not operate correctly when compiled. The ADR() function will,

however, always return correct values.

Consult Section 6.3 of this manual for more information on
ABC’s memory allocation scheme for arrays and strings.

4.13 Timing Loops

BASIC programmers often use "do-nothing" FOR/NEXT loops to
obtain time delays. These usually appear in the form:

100 FOR DELAY = 1 TO 100
110 NEXT DELAY

You will be in for a shock if you compile and run the above
instructions. ABC will execute the loop so rapidly that the
delay will seem to disappear!

The best way to write a controllable time delay for ABC is to
use one of the Atari’s built-in hardware timers. The operating

system changes the value of memory location 20 every l/60th of
a second. By PEEKing this location in a FOR/NEXT loop, you can

obtain precise time delays that will work correctly in both the
BASIC and compiled versions of your software.

The following time-delay subroutine can be appended to any

BASIC program:

1000 REM * ABC TIME DELAY SUBROUTINE
1010 REM * Set the value of variable JIFFIES equal to
1020 REM * the desired time delay in 60ths of a second.

1030 REM * Then perform a GOSUB 1000 to obtain delay.

1040 FOR DELAY = 1 TO JIFFIES

1050 TICK = PEEK(20)
1060 IF TICK = PEEK(20) THEN 1060

1070 NEXT DELAY
1080 RETURN

To get a 5-second time delay with this method, you could write:

100 REM * This is the body of your program.

110 JIFFIES = 60*5 : GOSUB 1000
120 REM * You just waited 5 seconds.

Section 5
Advanced Usage

The following information is included for advanced programmers

who may want to alter the default properties of the ABC
compiler. Software authors who wish to distribute their
compiled programs should also read this section.

5•1 Changing The Load Address

The ABC compiler normally produces code that is loaded at
memory address $2600 (hex notation). This default address is
derived from the run-time interpreter that is automatically

loaded by the compiler (see Section 3). You can obtain an
alternative load address by choosing a different run-time

interpreter when the ABC compiler is run.

Immediately after the ABC copyright message is displayed, the
compiler scans the console switches for one second. If you
press the OPTION key during this period, ABC will not proceed
to load the $2600 interpreter. Instead, it will ask you for
the name of one of the other interpreters included on your ABC
disk. Respond with "INTERP.Xnn" where nn is the high byte of

the load address in hex. For example, if you wanted a load
address of $1F00, answer the prompt with "INTERP.X1F."

-14- -15-

To find out which run-time interpreters are available on your
ABC disk, enter DOS and use menu option "A" (directory) to
examine the list of "INTERP" files. Contact Monarch Data
Systems if you need an interpreter with a specific load address.

5.2 Generating Relocatable Code

When producing software for commercial distribution, it’s a
good idea to make the code relocatable to assure compatibility
with different memory configurations. Your ABC disk includes a
special utility called "MKRELO" that can be used to produce a

compiled, fully relocatable version of your Atari BASIC

programs.

The code-generating technique used by MKRELO is unusual. It
requires that you compile your BASIC source program twice,
using different load addresses. MKRELO then compares the two
disk files and produces a third version of the program which
can be loaded at any address.

The following procedure illustrates the proper use of MKRELO.

It assumes that you have SAVEd a BASIC program called
"GAME.BAS" on a source disk which also contains DOS 2.OS. Make
sure there is plenty of free space on the source disk.

a. Boot your ABC working disk along with the default ($2600)
interpreter as described in Section 3.

b. Respond to the prompt for the BASIC source filename
("GAME.BAS" or just "GAME" in this example).

c. Respond to the prompt for a destination filename, say
"GAME.X26."

d. When the first compilation is completed, replace the ABC
working disk into Drive #1. Press the START key and

immediately press and hold the OPTION key until you receive
the prompt for an interpreter filename. Respond with
"INTERP.X1F."

e. After the compiler reads the $1F00 interpreter into RAM,
replace the BASIC source disk and provide the source
filename again ("GAME.BAS"). Then give ABC a destination
filename that is different from the one used for the first
compilation ("GAME.X1F," for instance).

f. When the second compilation ends, return to DOS by pressing

the SELECT key. Re-insert the ABC disk and use DOS option
"L" to load and automatically run the MKRELO program.
Replace the program disk when the MKRELO title appears.

g. MKRELO will ask for the names of the two files created by

the previous compilations. Respond with "GAME.X26" for the
first prompt and "GAME.X1F" for the second prompt.

h. You will now be asked for the filename of the final,
relocatable program. Respond with a suitable title (e.g.;
"GAME.REL") and press RETURN.

i. MKRELO takes a while to finish because it compares the
files one byte at a time. Once the process is completed,
re-enter DOS by pressing the SELECT key. To load and run

your relocatable program, use DOS option "L" and respond
with the name of the file created by MKRELO.

Section 6

Technical Notes

This section provides various technical details about the ABC
compiler and the P-code it produces.

6.1 Error Checking

Most program conditions that require monitoring are checked
during run-time. However, one specific condition that is not
checked is subscript values. Any negative or out-of-bounds
subscript will cause the ABC interpreter to behave in an
unpredictable manner. We decided not to check subscripts
because it saves execution time, and it was assumed that your
source programs would be debugged before compilation.

6.2 Low Memory Usage

The ABC run-time interpreter uses all page zero locations from

$80 and $C2 hex, inclusive. The standard BASIC line number and
error number locations are supported. However, other BASIC

zero-page variables (such as the high address pointer and
symbol table pointer) are not supported. Page six ($600-$6FF)

is fully available for USR routines and other purposes.

6.3 Memory Allocation

Compiled programs initially set the OS variable APPMHI ($0E-0F)

to the end of the loaded program module. During the course of
program execution, the value of APPMHI is automatically

adjusted upward for the following reasons:

-16- -17-

Input Statement Buffer.

The first INPUT statement causes allocation of a 255-byte
buffer.

GOSUB and FOR Stack.

The first GOSUB or FOR statement causes allocation of a
128-byte stack.

DIM Statements.

Each DIMensioned numeric array requires nine bytes of control
information plus three additional bytes per array element.

DIMensioned string variables require nine bytes of control
information plus one byte for each string character.

Applications may allocate memory by adjusting APPMHI upward,
but to be compatible with the BASIC cartridge you should work

from MEMTOP ($2E5—2E6) downwards. It1s also a good idea to
execute all DIM statements, a loop or GOSUB and an INPUT

statement before allocating memory to make sure there’s enough
room for ABC to work comfortably.

Section 7
Error Handling

7.1 Compilation Errors

Most of the error messages that can result from a compilation
error are self-explanatory. However, there are two types of
messages that require some explanation.

If your BASIC source program includes an illegal statement or
function, the compiler will display a coded message number that
indicates which type of statement or function caused the

error. A list of error message numbers and their corresponding
statement/function follows.

-18-

7.2 Ill Statement Messages

Code _# Statement Name Code _# Statement Name

4 LIST 5 ENTER
14 BYE 15 CONT
19 DEG 22 NEW
24 LOAD 25 SAVE
33 RAD 37 RUN
46 DOS 51 LPRINT
52 CSAVE 53 CLOAD

7.3 Ille gal Function Messages

Code _# Function Name Code ± Function Name

68 ATN 69 COS
71 SIN 72 RND
74 EXP 75 LOG
76 CLOG 77 SQR

7.4 Run- Time Errors And Program Terminate on

Only one type of message can result from a run-time error.
This message displays a standard Atari BASIC error number along
with the original BASIC line number that produced the P-code
where the error occurred. You will also see a menu which
allows you proceed in various ways by pressing a console key:

OPTION Reboot entire system
SELECT Return to DOS
START Re-run the stopped program

The above menu will also appear if a BASIC END command is
encountered, or if the interpreter runs out of instructions to

execute.

-19-

Warranty Information

Monarch Data Systems warrants to the original purchaser that

this Monarch Data Systems program diskette (not including the
computer programs) shall be free from any defects in materials
or workmanship for a period of 90 days from the original date

of purchase. If a defect is discovered during this 90-day
warranty period, and you have timely validated this warranty,

Monarch Data Systems will repair or replace the diskette at

Monarch Data System's option, providing that the diskette and

proof of purchase are delivered or mailed, postage prepaid, to
Monarch Data Systems.

This warranty shall not apply if the diskette:

Has been misused, or shows signs of excessive wear;
Has been damaged by the playback equipment, or;
If the purchaser causes or permits the diskette to be
serviced or modified by anyone other than Monarch Data
Systems.

Any applicable implied warranties, including warranties of

merchantability or fitness, are hereby limited to 90 days from
the original date of purchase. Consequential or incidental
damages resulting from a breach of any applicable express or
implied warranties are hereby excluded.

Notice

All Monarch Data Systems computer programs are distributed on
an "as is" basis, without warranty of any kind. The entire
risk as to the quality and performance of such programs lies
with the purchaser. Should the programs prove defective
following their purchase, the purchaser and not the

manufacturer, distributor or retailer assumes the entire cost
of all necessary servicing or repair.

Monarch Data Systems shall have no liability or responsibility
to a purchaser, customer or any other person or entity with

respect to any liability, loss or damage caused or alleged to
have been caused directly or indirectly by computer programs
sold through Monarch Data Systems. This includes but is not
limited to any interruption of service, loss of business or
anticipatory profits or consequential damages resulting from
the use or operation of such computer programs.

The provisions of the forgoing warranty are subject to the laws
of the state in which the diskette is purchased. Such laws may
broaden the warranty protection available to the purchaser of
the diskette.

