
Altirra BASIC Reference Manual
05/18/15 Edition

Avery Lee

Copyright © 2014-2015 Avery Lee, All Rights Reserved.

Permission is granted to redistribute this document in verbatim form as long as it is done free of charge
and for non-commercial purposes.

All trademarks are the property of their respective owners.

While the information in this document is presumed correct, no guarantee is provided as to its accuracy
or fitness for a particular use.

Table of Contents
Introduction...4
Starting Altirra BASIC..4
Immediate (direct) mode...5
Syntax..6
Program control...8
Listing a program..9
Load/save...10
Expressions..10
Control flow..14
Mathematical functions...17
Arrays..18
Strings..19
Input/output...23
Data...27
Trigonometric functions..28
Controllers...29
Graphics...30
Sound...33
Error handling..35
File management...35
Exiting BASIC..36
Memory access..37
Error codes..40
Defined memory addresses...45
Implementation limits..46
Special techniques...47
Compatibility with other BASICs...50
Program format..52

Introduction
Altirra BASIC is a BASIC interpreter for the Atari 8-bit computer line, including the 400/800, 1200XL,
600/800XL, 800/130XE, and XEGS computers. It is designed to be a drop-in compatible replacement
for Atari BASIC, but includes selected extensions to run faster and be easier to use than Atari BASIC.

While compatible, Altirra BASIC is a reimplementation from scratch – it does not share any code with
and is not based on Atari BASIC. Unlike the latter, Altirra BASIC is freely distributable in both source
and object code form.

Starting Altirra BASIC
Altirra BASIC comes in two forms, an 8KB cartridge ROM image (atbasic.bin) and a DOS executable
(atbasicx.xex). Both start the same BASIC interpreter, with minor differences.

Cartridge version

The 8KB cartridge version is made as a drop-in replacement for the Atari BASIC cartridge or system
BASIC ROM (XL/XE systems). It can be burned into an EPROM to replace the original BASIC ROM
in hardware, or written to a compatible flash memory cartridge. With emulators, it can substitute for the
ATARIBAS.ROM file required to supply BASIC.

The cartridge ROM is configured to allow a disk boot on startup so that if a disk drive is attached, DOS
boots before BASIC is started.

Executable version

The executable version can be run from any compatible DOS, including Atari DOS 2.0S and
SpartaDOS X. It can also be run as AUTORUN.SYS during boot.

48K of memory is required to run the executable version, and additionally, the cartridge area ($A000-
BFFF) must be free memory. An error will be displayed if it is occupied by a cartridge or otherwise not
available. On XL/XE systems, the loader will automatically attempt to disable on-board BASIC if it is
enabled. With SpartaDOS X, the X command must be used to load Altirra BASIC.

The executable version has two other features. By default, it will automatically attempt to load and start
D:AUTORUN.BAS on startup. It can also auto-start a different program if a filename is specified on
the command line.

On a 400/800, the executable version may run with 4KB less memory available than the cartridge
ROM version. The reason is the OS-A/OS-B screen editor has a bug that causes it to overwrite up to a
full memory page above MEMTOP when clearing the screen. This is of no consequence when running
BASIC from ROM, but this would trash the executable version. Therefore, the executable version tests
for whether an OS-A/B level screen editor is in use and whether it has this bug. If so, the memory limit

is lowered by 4KB to avoid the problem.

Immediate (direct) mode
When Altirra BASIC is started, it displays a banner and a Ready prompt:

Altirra 8K BASIC 1.41
Ready

The Ready prompt indicates that BASIC is in immediate mode and ready to receive a new typed-in
command. Immediate mode allows two main actions: editing program code and running direct
commands.

Direct commands

BASIC statements can be entered directly in immediate mode. One of the most useful is the PRINT
statement, which can be used to evaluate expressions:

Ready
PRINT 1+2*3
7

Ready

Editing program code

BASIC program code can also entered for later use. This is done by entering a line starting with a line
number:

Ready
10 PRINT "HELLO, WORLD!"
20 PRINT 1+2*3

This PRINT statement is not executed immediately, but instead stored for later use. The stored program
can in turn be printed out with the LIST statement, and run with the RUN statement:

Ready
LIST
10 PRINT "HELLO, WORLD!"
20 PRINT 1+2*3

Ready

RUN
HELLO, WORLD!
7

Ready

This is called deferred mode. This is the more usual and powerful way of using BASIC.

A program consists of all numbered lines, in order. If lines are entered out of order, they are still
reordered with increasing line numbers.

A line can be replaced by re-entering a new line with the same line number. If a line number is entered
alone with no statements after it, the line with that number is deleted.

When adding, replacing, or deleting lines from the program, no Ready prompt is printed after each edit
is processed. This usually isn't an issue as BASIC is quick to process each edit.

Syntax
Line numbers

All stored program lines start with a line number, which is an integer from 0 to 32767. Line numbers
cannot be negative or greater than 32767. A fractional line number like 1.5 can be entered, but is
rounded to an integer before being used.

Common practice is to advance line numbers by a round number like 10, so as to leave room in
between if lines have to be inserted.

Statement syntax

Following the line number is a statement, which is a command for BASIC to do something. Statements
are named by one or two words. Altirra BASIC requires keywords, including statement names, to be
typed in uppercase.

Each statement has unique syntax for how its arguments, if any, are specified. Arguments include X and
Y positions for drawing commands, and numbers and strings for PRINT commands. In many cases, the
arguments supplied to a statement can vary, including possibly having no arguments if they are all
optional.

In this manual, the syntax for each statement and its arguments. is shown using this notation:

LPRINT [;
,]{aexp

sexp}[{;
,}[{aexp

sexp}]]...

This shows the elements of the statement that can be included, from left to right. The semicolon and
comma are shown vertically stacked, which means that either one can be used. The stack is surrounded

by square brackets [], which means that the stack is optional and can be left out. The curly braces are
not intended to be entered, but indicate grouping. Finally, the ellipsis at the end (…) indicates that the
last part can be repeated. Therefore, the following statements are all valid according to the above
syntax:

LPRINT
LPRINT 10
LPRINT ,10
LPRINT ,10,
LPRINT ,A$;B$

The names aexp and sexp also appear in the syntax, which mean arithmetic expression and string
expression. An aexp can be a number, a numeric variable, or an expression like 1+2*3, and is any
expression that results in a number. Similarly, an sexp is a string expression, such as A$(4,7) or
CHR$(125). Most statements take aexps or sexps.

avar and svar indicate that an arithmetic (numeric) variable or string varable is needed. X, I, and
COUNT are valid avars, while NAME$ and "ABC" are valid svars. Expressions like X+1 and A$(4),
on the other hand, are not valid avars or svars. Most of the cases where avars and svars are involve out
parameters, where a value is stored into the variables instead of retrieved from the variable.

An mvar is a matrix variable, or a numeric array variable. A() and MAP() are array variables.

lineno refers to a line number, or a number from 0 to 32767. It is used in the few cases where a
statement must take a line number directly, such as IF. Most statements that take line numbers actually
accept an aexp, instead.

Finally, an iocb is an I/O control block number, from 0-7. It is always preceded by a hash sign (#) and
usually a number, but any expression that is valid for an aexp can also be used as an iocb.

Combining statements on one line

A colon (:) may be used to include more than one statement on the same line.

10 PRINT "HELLO, WORLD!":GOTO 10

There are a couple of exceptions: REM and DATA statements must be the last statement on the line.
Any colon after REM or DATA is interpreted as part of the statement rather than as a statement
separator.

Abbreviating statement names

Any statement name can be abbreviated by typing the first part of the name and ending with a period.
The first matching statement in the statement with that prefix is used. The statement list is ordered such
that more commonly used statements have shorter abbreviations. For instance, G. is GOTO, not GET or
GRAPHICS. The statement with the shortest abbreviation is REM, which can be abbreviated with just

a single period.

Abbreviated statement names are always expanded to the full name upon tokenization, so after a line
has been entered, there is no difference between using an abbreviated or full statement name – the
name is expanded either way. The abbreviations are just a shortcut to save typing.

Variable and function names cannot be abbreviated, only statement names.

Note: There is one quirky case where the single period abbreviation of REM may not work, when it is
at the beginning of a line:

.10 LOOP ITERATIONS
Error- .10 LOOP ITERATIONS

The reason is that the “.10” is picked up as a line number. Entering a remark as an immediate statement
is unusual, but this could be encountered by accident in an ENTER script.

Program control
RUN (RU.)

Syntax: RUN [sexp]

Begins execution of a program in deferred mode, starting with the first (lowest numbered) line. Each
line is executed in turn with the next highest line number, until either the end of the program is reached,
an error occurs, or a statement redirects execution elsewhere.

The RUN statement takes an optional string expression with a filename of a program to run, previously
saved with the SAVE statement. If present, that file is loaded and run.

RUN "D:PROGRAM.BAS"

While a program is executing, the [BREAK] key may be pressed at any time to interrupt execution and
return to immediate mode.

RUN can also be used in deferred mode. When used without an argument, it restarts execution at the
beginning of the program, and when used with a filename, it “chains” to another program, restarting
execution at the beginning of the newly loaded program.

NEW

Resets BASIC state for a new program. The current program is cleared out, including all program lines,
variables, arrays, and strings. This is used to restart with a clean slate without having to restart the
computer.

If used in deferred mode, execution stops after NEW is executed.

END

Ends program execution. Any open I/O channels are closed, and all sound channels are silenced.

Ordinarily this isn't needed, as an implicit END automatically occurs when the end of a program is
reached. However, sometimes an END in the middle of the program is useful, when there are
subroutines or other lines afterward that shouldn't be executed.

Although unusual, END can also be used in immediate mode, if for nothing else but to quiet a
cacophony from SOUND commands.

CONT (CON.)

Continues deferred execution from the point where it last stopped.

CONT is used to resume execution after a stop from an error or STOP statement. Variables can be
checked with PRINT or fixes made to the program, and then execution continued with CONT. This
allows a form of “edit and continue” when working on a BASIC program. CONT cannot continue after
END has been executed, however.

Execution resumes at the first line after the line number where execution was stopped, not the next
statement. Any number of lines can be deleted, and execution will resume at the next line that still
exists. However, if the line where the stop occurred still exists, any remaining statements on that line
are skipped.

There are a couple of more limitations on edits that can be done before CONT. If there are outstanding
FOR or GOSUB statements that BASIC has remembered, those lines should not be edited, or CONT
may fail with a GOSUB/FOR gone error (error 15), or the subroutine/loop may malfunction. Also, if
the program is in the middle of READing from DATA statements, a RESTORE must be executed, or
else the next READ may fail.

STOP (STO.)

Temporarily stops execution, printing a message with line number:

Stopped at line 140

This can be used to signal a problem that does not raise an actual error. The line number can be used to
diagnose the problem, and if necessary, execution can be resumed with CONT or GOTO.

Listing a program
LIST (L.)

Syntax: LIST [sexp]
LIST aexp [,aexp [, sexp]]

Prints out program lines in readable form.

If a line number is specified, only that line is listed. If two line numbers are specified, only lines with
numbers within that range are listed. For instance, LIST 10,50 will list lines starting with line 10 and
ending with line 50, inclusive. Neither line has to exist.

An optional filename can be included to send the output to a file or device instead. This can be used to
write a listing to disk for later use with the ENTER command, e.g. LIST “D:PROGRAM.TXT”, or to
print out a listing, e.g. LIST “P:”.

ENTER (E.)

Syntax: ENTER sexp

Executes lines from a text file as immediate mode lines. This is the opposite of LIST, as it converts a
text file to program lines instead of the other way around. Each line can either hold direct commands or
edits to program code. The LIST statement is one way to generate such a file.

ENTER automatically stops current program execution. No further commands are executed in the
current line, or in deferred mode, in the rest of the program, unless the text file itself contains
commands to do so. It is, however, possible for a text file executed by ENTER to contain a GOTO,
RUN, or CONT statement.

Load/save
LOAD (LO.)

Syntax: LOAD sexp

Loads a program from disk that was previously saved by the SAVE command.

Execution stops when LOAD is executed. No further commands on the current line or the rest of the
program are run.

If a problem occurs during a LOAD statement, such as insufficient memory or an I/O error, an implicit
NEW is executed.

SAVE (S.)

Syntax: SAVE sexp

Saves the current program to disk in binary format, so that it can later be loaded back with LOAD.

CLOAD (CLOA.)

Loads a program from cassette tape. A single beep will be signaled by the operating system so that the
user can press PLAY on the tape player, and then press a key. The program will then be loaded from
tape.

Note: CLOAD differs from LOAD "C" in that it opens the C: device in short IRG mode, without gaps
in between records. Use CLOAD over LOAD "C".

CSAVE (CS.)

Saves the current program to cassette tape. When used, the operating system will sound two beeps to
ask the user to press RECORD on the tape player and then press a key. The tape recorder will then start
up, the program will be saved to tape, and the tape recorder will automatically stop.

Note: CSAVE differs from SAVE "C" in that it opens the C: device in short IRG mode, without gaps in
between records. Use CSAVE over SAVE "C".

Expressions
Many arguments to a statement, in turn, take expressions as arguments. Expressions combine values to
produce a derived value. The simplest and most common statement to do so is the LET statement.

LET (LE.)

Syntax: [LET] {
avar=aexp

mvar (aexp[, aexp])=aexp
svar [(aexp [, aexp])]=sexp}

The LET statement assigns the value of an expression to a numeric variable, element of a numeric
array, or to part or all of a string array. It is unique among the statements in that the LET statement
name is optional and usually omitted, leaving just var = value as the statement. This is also called an
assignment.

After the LET statement executes, the variable, array element, or (sub)string on the left has the same
value as the expression on the right. The value is stored and not the expression, so if the result of the
expression later changes, the variable doesn't.

A=1

Ready
B=A

Ready
A=2

Ready
PRINT A,B
2 1

Here, the assignment B=A sets B equal to A's value at the time of the assignment (1), but afterward

changing A doesn't change B.

Values

The simplest form of an expression is a value – a number or variable. An expression always contains at
least one value.

Altirra BASIC allows numbers to be entered in three different ways: decimal, exponential, and
hexadecimal.

d.ddd (decimal number)

Decimal numbers are entered as leading integer digits, followed by a period, and then following
fractional digits. 0, .1, 1.5, 2., and 79.273 are all valid decimal numbers. A + or – may also precede the
number to indicate its sign.

d.dddE+dd (exponential notation)

Numbers can also be entered in exponential notation, as a base value (mantissa) and a base-10
exponent. An E followed by a sign (+ or -) is used to separate the two and signify use of exponential
notation. For instance, -1.04E+07 means -1.04×107, while 2.9E-06 means 2.9×10-6.

By default, Altirra BASIC uses exponential notation for numbers smaller than 0.01 or larger than 1010
in magnitude. However, nothing prevents use of exponential notation within that range and 1E2 is
accepted as 100. Denormalized forms such as 0.01E6 and 107.4E-2 are also valid.

$hhhh (hexadecimal value)

Encodes a hexadecimal (base 16) value from 0-65535. These are most useful for memory addresses and
for bit-encoded values. For example, $A9CF = 43471.

About floating point

All numbers are stored in Altirra BASIC in floating point format. This allows storage of both fractional,
integer, small, and big numbers. The tradeoff is that big numbers are less accurate than small numbers.
However, because decimal floating point is used, the rule is simple: at least 9 significant decimal digits
of precision are always preserved when storing a number.

For example, the value 0.0012307 has three significant digits (12307), so it can be stored exactly.
However, 3.14159265358979 has 15, so it can only be stored as 3.14159265. In some cases, 10 will be
stored, depending on the position of the decimal point (even or odd placement).

Nine significant digits are also enough to store any integer numbers up to ten million exactly. Integers
are numbers with no fraction, so they are a special case of floating point numbers. This means that, for
instance, memory addresses can always be stored exactly, because all values 0-65535 are well within
this range.

The smallest value that can be stored is ±10-98 (1E-98), while the largest is ±9.99999999×1097
(9.99999999E+97).

Operators

Two or more values can be combined into a more complex expression with an operator in between,
which combines the values to produce a new value.

For instance, the addition operator (+) adds two values together and replaces them with their sum. The
expression A+1 contains two values, the variable A and the number 1, combined with the addition
operator. The resulting expression takes the current value stored in A and adds 1 to it. The notation is
meant to be familiar to conventional algebra, with some concessions for symbols not available on the
keyboard: 1+2×3 becomes 1+2*3.

Most operators are binary, meaning that they combine two values. This leads to an alternation of value,
operator, value..., always beginning and ending with a value. There are a couple of exceptions that are
unary operators, which mean that they work on only one value, which follows the operator.

The available operators in Altirra BASIC are:

+, - (unary plus, minus)

Preserves or flips the sign of a real number.

+, - (addition, subtraction)

Computes the arithmetic sum or difference of two real numbers.

*, / (multiplication, division)

Computes the arithmetic product or ratio of two real numbers.

An attempt to divide by zero results in a value error (error 3).

Caution: Multiplication and division can cause a value error (error 3) when the result is so small that it
can no longer be stored as a non-zero value. This is an unconventional behavior in the original Atari
operating system math routines, which BASIC uses. Some alternate operating systems may give the
more conventional behavior of underflowing to zero.

^ (exponentiation)

Computes the first value raised to the power of the second. For integer powers, this is equivalent to
repeated multiplication, i.e. 26 = 2*2*2*2*2*2. This is conventionally written as xy, but due to
limitations on the computer, x^y is written instead.

If x is a negative number, y must be an integer or a value error (error 3) results.

Note: For compatibility with Atari BASIC, 0^0 = 0, even though by mathematical convention it is
usually defined as 1.

& (bitwise AND)

Computes the bitwise AND function of two integer values, where a resulting bit is set only if the bit is
set in the same position in both values when represented in binary. The integers can be in the range of 0
to 65535, inclusive.

! (bitwise OR)

Computes the bitwise OR function of two integer values, where a resulting bit is set if the bit in that
position is set in either value. The integers can be in the range of 0 to 65535, inclusive.

% (bitwise exclusive OR)

Computes the bitwise exclusive OR function of two integer values, where a resulting bit is set if bit in
that position is set in only one, and not both, of the two values. The integers can be in the range of 0 to
65535, inclusive.

AND

Computes the logical AND of two boolean values, where the result is true only if both values are true.

A value is considered to be boolean true if it is nonzero, and false if it is zero. When producing boolean
values, such by AND, OR, or a relational operator, BASIC produces 1 for true and 0 for false.

OR

Computes the logical OR of two boolean values, where the result is true if either value is true.

<, >, <=, >=, =, <> (relational operators)

Compares two numbers or string values, returning boolean false or true depending on whether the first
value is less than, greater than, less than or equal to, greater than or equal to, equal to, or not equal to
the second. <=, >=, and <> are how the mathematical operators ≤ (less than or equal to), ≥ (greater than
or equal to), and ≠ (not equal to) are entered.

For strings, the strings are compared character-by-character starting at the first character, using the
number of each character in ATASCII. If the character values in the two strings don't match at some
point, the result is the comparison of the first character that doesn't match between the two strings. If no
mismatch is found but one of the strings is shorter than the other, the shorter string is considered to be
less than the longer string.

String comparisons are case sensitive: lowercase “a” is not equal to uppercase “A”.

Operator precedence

When multiple operators are present in the same expression, BASIC evaluates the operators in order
according to the precedence of each operator, similarly to how arithmetic formulas are used. For
instance, with 1+2*3, the multiplication operation is performed first, giving 1+6, and then the addition
operation, giving 7.

The precedence of each operator is listed in the following table:

Evaluated first < > <= >= <> = (strings)

+ - (unary)

^ (power)

& ! % (bitwise operations)

* / (multiplicative)

+ - (additive)

< > <= >= <> = (numbers)

NOT (logical)

AND (logical)

OR (logical)

Evaluated last = (assignment)

Table 1: Operator precedence

Whenever two operators are involved in the same expression at the same precedence level, the leftmost
one is evaluated first. Therefore, 10/2/2 = 2.5.

When the order of operations as determined by operator precedence is not as desired, parentheses can
be used to group subexpressions to force evaluation order: (1+2)*3 = 9, because the addition is
performed first, giving 3*3 as an intermediate result.

Control flow
BASIC provides a number of control flow structures to direct program execution from one place to
another, so that the program is not simply just run from top to bottom. This can include repeating
portions (loops) and reusing the same lines from multiple places (subroutine calls).

To provide loop and subroutine support, BASIC maintains a runtime stack which contains all of the
loops and subroutine calls that the interpreter is currently tracking. This is not ordinarily something to
be minded as long as the beginning and end of loops and subroutines are matched, but it can
occasionally become an issue if such control flow structures are left open.

REM (.)

Syntax: REM ...

Includes a remark (comment) in the program. Any text can be entered after the REM statement, which
is ignored by the interpreter. Nothing happens when REM is encountered during execution. REM must
be the last statement on a line.

Besides adding documentation to a program, another use for REM is to temporarily hold a line in place
when there is nothing else to put in that line. This can happen if all statements on a line need to be
removed while a program is being modified, but there are other parts of the program left that still do a

GOTO or GOSUB to that line. A line cannot exist with no statements on it, so REM can be used to hold
the line in place.

GOTO (G.) / GO TO

Syntax: GOTO aexp

Jumps to the beginning of the line with the supplied line number. If the line cannot be found, a line not
found error (error 12) occurs.

In Altirra BASIC, GOTO can be used with expressions as well as line numbers. This is known as a
computed GOTO, and is a convenient way to switch between multiple jump targets:

10 FOR I=1 TO 3
20 GOTO 30+I
31 PRINT "ONE":GOTO 40
32 PRINT "TWO":GOTO 40
33 PRINT "THREE":GOTO 40
40 NEXT I
RUN
ONE
TWO
THREE

GO TO is a synonym for GOTO.

FOR...NEXT (F. .. N.)

Syntax: FOR avar = aexp TO aexp [STEP aexp]
NEXT avar

Creates a counting loop, where statements between a FOR statement and a NEXT statement with a
matching variable are executed with a variable counting within the given range, starting from the
beginning value and through and including the ending value.

The step value controls the rate at which the counting variable increases or decreases for each loop
iteration. It defaults to 1 if omitted, so FOR I=1 TO 5 … NEXT I will execute the enclosed statements
with I=1, 2, 3, 4, and finally 5. FOR I=5 TO 0 STEP -2, on the other hand, will execute the loop body
with I=5, 3, and finally 1. If the initial value and step value cause the loop to miss the ending value, the
loop will stop before the ending value and not go past it.

10 FOR I=0 TO 10 STEP 2
20 PRINT I
30 NEXT I
RUN
0
2

4
6
8
10

Ready

FOR...NEXT loops can be nested. When the NEXT statement is encountered, it is matched against the
most recent FOR statement with the same variable, and any FOR frames in between are forgotten.
NEXT will not match a FOR outside of a GOSUB, though:

10 FOR I=1 TO 2
20 FOR J=1 TO 10
30 PRINT I,J
40 NEXT I
50 NEXT J
RUN
1 1
2 1

Error- 13 at line 50
15 GOSUB 20
RUN
1 1
Error- 13 at line 40

In this case, the NEXT I statement on line 40 causes the FOR J statement at line 20 to be forgotten, so
the NEXT J on line 50 fails. However, when GOSUB is added in between at line 15, the NEXT I
statement no longer finds the FOR I loop. This can get confusing, so it's best to match FOR and NEXT
statements so they cleanly nest.

The body of a FOR...NEXT loop does not have to be a single block of lines, and it is valid to jump in
and out of the loop using statements such as GOSUB and GOTO:

10 FOR I=1 TO 3
20 GOSUB 1000
30 NEXT I
40 END
1000 PRINT "At subroutine!",I
1010 RETURN
RUN
AT SUBROUTINE! 1
AT SUBROUTINE! 2
AT SUBROUTINE! 3

Ready

Regardless of how program flow proceeds within the loop, the loop is formed by the matching FOR
and NEXT statements.

Occasionally it is useful to exit a FOR...NEXT loop early, without waiting for the loop variable to pass
the ending value condition. In that case, the POP statement should be used to remove the FOR...NEXT
entry on the runtime stack. This can be done either before or after GOTO or another control flow
statement is used to exit the loop.

IF..THEN (inline form)

Syntax: IF aexp THEN { lineno
statement}

Tests a boolean condition and optionally executes a statement or jumps to a new line if the condition is
true. If the condition is false, execution continues with the next line, not the next statement. Thus, all
remaining statements on the line are controlled by the IF.

IF 0=1 THEN PRINT "0 EQUALS 1"

Ready
IF 1=1 THEN PRINT "1 EQUALS 1"
1 EQUALS 1

Ready

If a line number is used directly, i.e. IF A<>1 THEN 20, the line number must be a number – it cannot
be an expression or variable like for the GOTO statement. If a computed line number is needed, a
GOTO statement should be used instead: IF A<>1 THEN GOTO 10*I.

IF..ELSE..ENDIF (block form)

Syntax:

IF aexp
statements

[ELSE
statements]

ENDIF

Tests a boolean condition and optionally executes one block of statements or another. If the condition is
true, the statements between the IF and the matching ELSE/ENDIF are executed; if it is false, the
statements between ELSE and ENDIF are executed instead.

This form differs from IF..THEN in that the controlled statements are delimited by ELSE/ENDIF
instead of the end of the line and may span multiple lines. THEN is not used for IF blocks.

It is also possible to nest IF blocks:

10 FOR I=1 TO 4
20 IF I<3
30 IF I=1:PRINT "ONE":ELSE:PRINT "TWO":ENDIF
40 ELSE
50 IF I=3:PRINT "THREE":ELSE:PRINT "FOUR":ENDIF
60 ENDIF
70 NEXT I
RUN
ONE
TWO
THREE
FOUR

Note that there is no ELSEIF or ELSE IF form.

Care should be taken when jumping in and out of block IF statements. When skipping over code within
an IF block statement, the matching is done statically, which means in order seen the listed program.
This ignores any other control flow statements such as GOTO and RETURN inside of the skipped
code, since it is not executed. It also means that POP has no effect on block IF constructs.

GOSUB (GOS.)

Syntax: GOSUB aexp

Calls a subroutine starting at the supplied line number. If the line cannot be found, a line not found
error (error 12) occurs.

The GOSUB statement is used with the RETURN statement to create subroutines, blocks of code that
can be reused more than once in a program:

10 PRINT "FIRST LINE":GOSUB 1000
20 PRINT "SECOND LINE":GOSUB 1000
30 PRINT "THIRD LINE":GOSUB 1000
40 END
1000 REM DELAY FOR A BIT
1010 FOR I=1 TO 100:NEXT I
1020 RETURN

When GOSUB is executed, an entry is created on the runtime stack to remember the current location,
and then execution proceeds to the supplied line. The RETURN statement is then used to return to after
the GOSUB statement.

If afterward it turns out that RETURNing back to the previous location is no longer necessary, the POP
statement can be used to remove the GOSUB entry on the runtime stack, causing BASIC to forget the
last GOSUB encountered. Each execution of a GOSUB statement should be matched to a
corresponding POP or RETURN; otherwise, BASIC may end up remembering an endless number of

GOSUBs, and eventually run out of memory with the runtime stack:

10 GOSUB 10
RUN

Error- 2 at line 10

There is, however, no requirement that a particular GOSUB always be matched with the same POP or
RETURN.

RETURN (RET.)

Returns execution to immediately after the last GOSUB executed (and not removed by POP).
Normally, a subroutine called by GOSUB ends in a RETURN statement to continue execution after the
GOSUB. Any FOR statements still open on the runtime stack since the last GOSUB are forgotten.

If no GOSUB statements are left on the runtime stack, thus indicating a RETURN with no matching
GOSUB, a Bad RETURN error (error 16) occurs.

ON..GOTO/GOSUB

Syntax: ON aexp {GOTO
GOSUB}aexp [, aexp] ...

Jumps to or calls a subroutine at one of a list of line numbers.

The integer portion of the supplied number is used to select the line number from the list, where 1
selects the first line number, 2 selects the second, etc. If the number is 0 or greater than the number of
supplied line numbers, execution proceeds with the next statement instead. The value must be between
0 and 255 regardless; a value error (error 3) results otherwise.

The GOTO and GOSUB keywords in an ON..GOTO or ON..GOSUB statement cannot be abbreviated
and must be fully typed out.

POP

Syntax: POP

Forgets the most recently found FOR or GOSUB statement, removing its entry from the runtime stack.
If there aren't any such statements and the runtime stack is empty, nothing happens.

POP is useful when a subroutine no longer needs to return to where it was called from, or when a
FOR...NEXT loop needs to be exited early:

10 GOSUB 1000
20 END
1000 FOR I=1 TO 5
1010 GOSUB 2000

1020 NEXT I
1030 RETURN
2000 IF I<>3 THEN PRINT "I DON'T LIKE ";I:RETURN
2010 POP:REM REMOVE GOSUB
2020 POP:REM REMOVE FOR
2030 PRINT "I LIKE ";I
2040 RETURN
RUN
I DON'T LIKE 1
I DON'T LIKE 2
I LIKE 3

Ready

It prevents BASIC from remembering stale subroutine calls or loops, which can cause either an out of
memory error or a NEXT/RETURN mismatch error.

Note that since IF statements are not remembered by BASIC on the runtime stack, POP has no effect
on an IF...ENDIF or IF...ELSE...ENDIF block, and is not needed when jumping out of one.

Mathematical functions
ABS()

Computes the absolute value of a number, giving a value that is non-negative (zero or positive). This
returns the argument for zero or positive numbers, and -X for ABS(X) where X is negative.

CLOG()

Computes the common (base 10) logarithm log(x) of a number. A value error results if the argument is
negative.

Note: Depending on the operating system installed in your computer, CLOG(0) may either return zero
or a large negative number. The older 400/800 operating system software, known as OS-B, will give
the negative number, while the XL/XE operating system will give error 3.

EXP()

Computes the exponential function of a number, or ex.

INT()

Computes floor function of a number. This gives the nearest integer less than or equal to the number.

PRINT INT(1),INT(1.5),INT(-1.5)
1 1 -2

LOG()

Computes the natural (base e) logarithm ln(x) of a number. A value error results if the argument is zero
or negative.

Note: Depending on the operating system installed in your computer, LOG(0) may either return zero or
a large negative number. The older 400/800 operating system software, known as OS-B, will give the
negative number, while the XL/XE operating system will give error 3.

RND()

Computes a random value from 0 to 1. The argument is ignored. A new random value is produced
every time the function is called.

10 GRAPHICS 8
20 COLOR 1
30 PLOT RND(0)*319,RND(0)*159
40 GOTO 30

Warning: The value of the RND() function depends on the time that has passed since the sound chip
(POKEY) was last reset. Over a million machine cycles occur per second, so normally this is fine.
However, in rare cases the delay between the last reset and the next call to RND() may be too
deterministic, resulting in rather un-random results. One solution is to ask the user to press a key or
button. This introduces a random delay to re-seed the random generator.

SGN()

Extracts the sign of a number, giving +1 for positive numbers, -1 for negative numbers, and 0 for zero.

SQR()

Computes the square root sqrt(x) of a number. A value error results if the argument is negative.

Arrays
DIM (DI.) / COM

Syntax: DIM {
mvar (N)

mvar (M , N)
svar (N) }[,{

mvar (N)
mvar (M , N)

svar (N) }]...

Sets dimensions for numeric or string arrays, allocating memory for their storage. An array must be
DIMensioned before it can be used. Once allocated, an array cannot be re-dimensioned without being
reset by CLR.

For numeric arrays, the value(s) specified are upper bounds. For instance, DIM A(4,3) creates an array

where the first subscript is in the range 0..4 and the second in 0..3, giving an array with 5×4 = 20
elements.

For string arrays, the value is a character count, which must be greater than zero. Unlike some other
BASICs, Altirra BASIC allows strings larger than 255 characters, limited only by available memory.
String arrays cannot be two-dimensional.

COM is a synonym for DIM.

Array subscripting

An array subscript expression is used to select an element within an array. For one-dimensional arrays,
a single subscript is used, i.e. A(1), and for two-dimensional arrays, two subscripts are used: A(1,2).
This can be used on the left side of an assignment to set an array element:

DIM A(5)

Ready
A(1)=10

Ready
PRINT A(1)
10

CLR

Syntax: CLR

Clears all runtime variables. Numeric variables are set to 0 and arrays are returned to undimensioned
status, freeing all associated memory. This is the only way to clear an array to free its memory or resize
it while a program is running.

Note that CLR does not remove the variables themselves.

Strings
String literals

A string literal is a string specified directly within an expression, with quotes. The most common use of
a string literal is with the PRINT statement, to print text to the screen:

PRINT "HELLO, WORLD!"

String literals begin and end with a double quote character ("). The ending quote character is optional,
if the string literal is at the end of a line, and is automatically added if omitted.

The Screen Editor provided by the OS has an escaping feature that allows some special characters to be

put into programs. For instance, the Move Left command can be embedded in a string by pressing ESC,
followed by Ctrl+Left Arrow. This allows cursor movements, character insert/delete, line insert/delete,
and clear screen commands to be used in PRINT statements.

Because the double quote is used to end the string, it can't be typed into a string literal. CHR$(34) can
be used to obtain this character instead.

Allocating a string array

While string literals are useful, in order to modify or manipulate strings, a string array must be used.

Before a string array can be used, it must be allocated with the DIM statement to set its maximum
length and allocate memory for it:

DIM A$(100)

The maximum length (size) is a tradeoff. Larger string arrays can hold more text, but require more
memory. Once DIMensioned, the size of a string array is set. Some BASICs allow string variables to
dynamically change size as needed, but then either accumulate unusable portions of memory called
garbage or have to run an expensive periodic garbage collection pass to compact memory. This doesn't
occur in Altirra BASIC, where all string memory is preallocated.

At any point, a string has two sizes associated with it: a length and a capacity. The length is how many
characters long the string currently in the string array is, while the capacity is the maximum number of
characters that the string array can hold, as set in the DIM statement. Newly DIMensioned string arrays
are empty and have length 0. The length always ranges from 0 up to the capacity. This means that while
a maximum length is set with DIM, the string array can hold shorter strings at different times and the
current length of the string is tracked separately.

Assigning to a string array

Once allocated, a string array is set by assigning to it, similarly as to a numeric variable:

A$="HELLO, WORLD!"

Afterward, the string array now contains the string from the right side of the assignment. If the string is
too long to fit in the string array, as much as can fit is copied and the rest is dropped.

A string assignment creates a copy of a string. When a string is copied from one string array to another,
the original string array can then be modified without affecting the copy.

10 DIM A$(100),B$(100)
20 A$="ABC"
30 B$=A$
40 A$="DEF"
50 PRINT A$,B$

RUN
DEF ABC

String subscripting

A string array may be accessed with subscripts to select a portion of the string array. This can be used
to extract portions of a string, or to insert a substring into a larger string.

There are two forms that can be used. If one subscript is specified, i.e. A$(4), the remainder of the
string array is selected starting at the given position, where 1 is the first character of the string array. If
two subscripts are used, i.e. A$(4, 7), the portion is chosen starting at the character position selected by
the first subscript, and ending at the second subscript (inclusive). This means that A$(4, 7) selects the
subscript with four characters starting at the fourth character – positions 4, 5, 6, and 7. The second
subscript must be equal to or greater than the first.

A string subscript expression can only select from the valid portion of a string, regardless of how long
the string array is. It can't extend beyond the current end of the string. If the string array only has three
characters in it, any subscript expression must end at the third character, or a bad string length error
(error 5) results.

DIM A$(10):A$="ABCDEF":PRINT A$(2,5):PRINT A$(3)
BCDE
CDE

Ready
PRINT A$(7)

Error- 5

String subscripting can also be used on the left side of an assignment to assign to only part of a string
array. When string subscripting is used on the left side of an assignment, the requirements are relaxed:
the selected substring may extend beyond the current length of the string, but must still be within the
DIMensioned length of the string array. An assignment to a substring that extends beyond the current
string automatically extends the string.

A$="ABCDEF":A$(5)="123456":PRINT A$,LEN(A$)
ABCD123456 10

Subscripting creates a view of a string array without copying the string. This is useful for extracting or
inserting a substring. Usually this is not an issue, except for an assignment to the same string array. In
that case, the result is as if the string is copied one character at a time, starting from the beginning. This
can be exploited to quickly initialize a string.

DIM A$(10):A$="0":A$(10)="0":A$(2)=A$:PRINT LEN(A$),A$

10 0000000000

Warning: For compatibility reasons, Altirra BASIC does not pre-clear string arrays. This can lead to
old data or garbage appearing in strings when it is extended via subscripting:

A$="ABCDEF":A$="":A$(5)="":PRINT A$
ABCD

To avoid this, any such portions should be manually cleared.

LEN()

Syntax: aexp=LEN (sexp)

Returns the current length of a string in a string array, in characters. This always ranges from 0 up to
the length originally declared in the DIM statement for the string array.

PRINT LEN("ABC")
3

Note that for a string array, this returns the current length of the string in the string array, not the
maximum length:

DIM A$(10):A$="A":PRINT LEN(A$)
1

One use for LEN() is string concatenation:

DIM A$(30):A$="ABC":A$(LEN(A$)+1)="DEF":PRINT A$
ABCDEF

STR$()

Syntax: sexp=STR $ (sexp)

Converts a number to string form. This can be used to insert a number into a string.

DIM A$(30):A$=" <- COUNT":A$(1,3)=STR$(10):PRINT A$
10 <- COUNT

Note: Only one instance of STR$() or HEX$() can be used in an expression. Using it more than once,
i.e. STR$(A)<HEX$(B), can result in incorrect results. It can be used more than once in the same
statement, however.

See also: VAL()

VAL()

Parses a decimal number out of a string. Any leading spaces are skipped, and parsing stops at the first
character not part of a valid number. An invalid string error (error 18) occurs if no number is found at
all.

PRINT VAL(" 42 ITEMS")
42

VAL() and STR$() are opposites: VAL() converts a string to a number, and STR$() converts a number
to a string.

See also: ASC(), STR$()

ASC()

Extracts the first character of a string and returns its character value as a number.

PRINT ASC("A")
65

Note: The result of applying ASC() to an empty string is an undefined value between 0-255.

See also: VAL()

CHR$()

Converts a number to a string containing a single character with that number, as represented in
ATASCII. This can be used to obtain characters that cannot be directly entered into a string literal, such
as the end of line character (155).

PRINT CHR$(65)
A

Note: Only one instance of CHR$() can be used in an expression. Using it more than once, i.e. CHR$
(A)<CHR$(B), can result in incorrect results. It can be used more than once in the same statement,
however.

HEX$()

Converts a number to hexadecimal form (base 16) in a string. Four hexadecimal digits are always
printed.

PRINT HEX$(49152)
C000

Note: Only one instance of HEX$() or STR$() can be used in an expression. Using it more than once,
i.e. STR$(A)<HEX$(B), can result in incorrect results. It can be used more than once in the same

statement, however.

Input/output
Altirra BASIC uses the computer operating system's character I/O (CIO) facility to do I/O. CIO
provides a common interface for devices, including the screen editor, disk drives, printers, serial ports,
and real-time clocks. Programs that use CIO, including BASIC, can make use of any device that has a
CIO device driver available for it.

I/O channels

All operations on devices are done on I/O channels, which are in turn controlled by I/O control blocks
(IOCBs). There are eight I/O channels, numbered from #0 to #7, with eight corresponding IOCBs.
Some of these I/O channels have defined uses by BASIC:

• #0 is reserved for the Screen Editor (E:) device.

• #6 is used by the GRAPHICS statement to talk to the Screen (S:) device, which controls the
graphical screen (top half in split modes).

• #7 is used by the CLOAD, CSAVE, LOAD, SAVE, ENTER, DIR, RENAME, PROTECT,
UNPROTECT, and ERASE statements, and by LIST when a filename is supplied.

IOCBs #1-5 are not used by BASIC and are available for program use. In addition, #6 and #7 may be
used when not conflicting with the above statements.

Only the PRINT and INPUT statements allow use of IOCB #0. Other statements will trigger an invalid
device number error (error 20) on an attempt to use IOCB #0.

File/device specifications

CIO uses a standard format to refer to both files and devices. The device is specified by a single letter,
followed by an optional unit number (unit 1 is assumed otherwise), and then a colon. For instance, the
editor is E:, while the second printer is P2:.

Some devices also take a filename afterward, particularly the disk (D:) device managed by DOS. A file
on disk 2 would be accessed with a filename like D2:PROGRAM.BAS.

Five devices are built into the OS and are always present. They are the editor (E:), screen (S:), printer
(P:), cassette tape recorder (C:), and keyboard (K:). For many of these, it is more convenient to use
appropriate BASIC statements, such as LPRINT to access P:, but sometimes it is useful to access them
directly with OPEN.

Additional devices that are often accessed from BASIC include R: and T: for serial devices and Z: for a
real-time clock. Device drivers have to be loaded beforehand for these devices to be available.

OPEN (O.)

Syntax: OPEN # iocb , aexp , aexp , sexp

Opens an I/O channel to the specified device and file.

The first aexp is the mode for the channel. It is typically 4 for read, 8 for write, and 12 for both
read/write. Other values may be allowed by the device. For instance, DOS also allows 6 for reading a
directory listing and 9 for appending to a file.

The second aexp is an auxiliary mode byte, which depends on the device being opened. It is often zero
for files and most devices.

The sexp argument is the filename to open.

Warning: Using the OPEN statement on an I/O channel that is already open will result in an IOCB in
use error (error 129), but can also corrupt the state of the existing IOCB and result in a crash if that
IOCB is subsequently used.

Warning: If an OPEN statement fails with an error, the I/O channel is left in a half-open state and must
be CLOSEd. This is the behavior of the OS's CIO facility.

CLOSE (CL.)

Syntax: CLOSE # iocb

Closes an I/O channel. If the I/O channel is already closed, no error results.

It is good practice to close I/O channels that are no longer needed, particularly those related to files on
disk (D:), or communications (R:). This frees up resources involved with the I/O channel and can help
avoid conflicts. In the case of a disk file opened for write (mode 8), it also finishes the file.

Warning: Closing an I/O channel can trigger an error, such as if the device driver attempts and fails to
flush remaining buffered data to the device.

PRINT (PR.) / ?

Syntax: PRINT [# iocb][;
,]{aexp

sexp}[{;
,}[{aexp

sexp}]]...

Formats numbers or string values and writes them to either the screen or an I/O channel.

Numbers are written out as either decimal form (1.23) or exponential form (1.23E+04) depending on
how big the number is. Strings are written out as-is. Comma or semicolon symbols are used to separate
multiple values and may also precede or follow the list of values. Semicolons allow values to print
back-to-back, while commas separate values into columns 10 characters wide.

If #iocb is present, it specifies the I/O channel to use. Unlike most other commands, the screen editor
(#0) may be used with PRINT. A comma or semicolon must separate #iocb from following values. In
most cases, a semicolon should be used to avoid padding to the next column before the first value.

By default, a PRINT statement ends its output with an end-of-line (EOL) value, so that any further
output begins on the next line. The PRINT statement can be ended with a semicolon to prevent this.

The columns established by commas are by default 10 characters apart starting from the beginning of
the PRINT statement. If a line is created with more than one PRINT statement, the columns from the
second PRINT may not line up with the first. Column widths other than 10 characters can be used by
POKEing the desired width into PTABW at location 201 ($C9).

? is a synonym for PRINT.

INPUT (I.)

Syntax: INPUT [# iocb{;
,}]{avar

svar}[{;
,}{avar

svar}]...

Reads numeric or string values from either the screen editor or an I/O channel, and places the result
into one or more variables. When reading from the screen editor (#0), a ? prompt is printed before each
line of input is accepted.

For numeric variables, the number may be in either decimal form (1.23) or exponential form
(1.23E+04). For string variables, the string is any combination of characters. Both numeric and string
values may be separated by commas, so that INPUT A$,B will take “ABC,123” and put “ABC” into A$
and 123 into B. If there are more values on a line than needed, the extra items are ignored.

If a string read is longer than the string array it is being read into, the whole string is read, but only the
characters that can fit are put into the string array.

Either commas or semicolons can be used to separate variables. The INPUT statement acts the same
way regardless of which one is used.

Lines read by the INPUT statement cannot exceed 255 bytes. If a longer line is encountered, a record
truncated error (error 137) results.

See also: READ

LPRINT (LP.)

Syntax: LPRINT [;
,]{aexp

sexp}[{;,}[{aexp
sexp}]]...

Formats number or string values and writes them to the printer (P:).

The syntax is the same as for the PRINT statement, except that an I/O channel cannot be specified. I/O
channel #7 is temporarily used to write to the printer and must not already be OPEN.

GET (GE.)

Syntax: GET # iocb ,avar

Reads a character from an I/O channel and places the character value into the given numeric variable.

If the I/O device is an interactive device like E: or K: and no input is available, GET will wait for new
input and then return the next available character. For a non-interactive source like a file on disk, an
end of file (error 136) occurs instead.

PUT (PU.)

Syntax: PUT # iocb ,aexp

Writes a single character to an I/O channel with the character value specified by the expression, 0-255.

NOTE (NO.)

Syntax: NOTE # iocb ,avar ,avar

Records the current position of an I/O channel into a pair of variables. This saves the current position
of the file so that it can be restored later with the POINT statement, seeking back to the same position.
There is no limit to the number of positions that can be temporarily saved this way.

The meaning of the two values depends on the device. For files on disk (D:), this depends on the
version of DOS used. Some versions of DOS use a sector number and byte offset pair, whereas others
use the two values together as a single byte offset within the file. The most portable use of the NOTE
and POINT statements is therefore only to use POINT with values that were originally retrieved from
NOTE, while the file is still open.

Under the hood, the first value is derived from AUX3+256*AUX4 on the IOCB, and the second value
from AUX5.

See also: POINT

POINT (PO.)

Syntax: POINT # iocb , avar ,avar

Sets the current position of an I/O channel to that specified by a pair of variables, typically retrieved
earlier by NOTE. The values used by POINT are specific to the device and in particular can vary
between different versions of DOS or on different disks.

Note that unusually, POINT requires an avar for both arguments instead of an aexp, even though both
are input arguments. This is for compatibility reasons.

See also: NOTE

XIO (X.)

Syntax: XIO aexp , # iocb , aexp , aexp , sexp

Executes a special device-specific command on an I/O channel.

The first argument is the command to execute, while the third and fourth arguments are the two mode

bytes. All three are device-specific.

XIO can be used either with an open or closed I/O channel, depending on the command. For commands
that are used with open I/O channels, the last argument is a string parameter for the command; it is
often ignored or set to the device name, i.e. “R:”. For commands that are used with closed I/O
channels, like DOS lock/unlock commands, it is a filename used to temporarily open the channel.

Caution: Use of XIO commands on an open I/O channel can cause subsequent GET, PUT, INPUT,
PRINT, BGET, and BPUT commands on that channel to fail. This is because the mode bytes overwrite
the ones originally used to open the channel, and the first one in particular determines the get/put
permissions on the channel. Check the documentation for the device for details; some device drivers,
particularly the R: serial device, are written to handle this. Commands that are designed to run on a
temporary I/O channel, such as the DOS command to rename a file (XIO 33), don't have this problem.

STATUS (ST.)

Syntax: STATUS # iocb , avar

Retrieves the CIO status code from the last command executed on an I/O channel. This will be an error
code if the last operation on that channel failed, or a value below 128 if the last operation succeeded.

STATUS won't cause an error if used with an I/O channel. Instead, the error 130 that results is put into
the variable.

BGET

Syntax: BGET # iocb ,aexp ,aexp

Reads binary data from an I/O channel to a location in memory.

The first number is the starting address in memory, and the second number is the number of bytes to
read.

BPUT

Syntax: BPUT # iocb ,aexp ,aexp

Writes binary data from a location in memory to an I/O channel.

The first number is the starting address in memory, and the second number is the number of bytes to
read.

Warning: Some versions of DOS cannot handle a BPUT from read-only memory (ROM), such as
BPUT #1,$E000,$0800, because they attempt to temporarily modify the memory to include sector
headers to speed up the transfer. This also means that doing a BPUT from screen memory can result in
glitches on screen, and trying to save ROM contents directly to disk can result in a corrupted disk. To
avoid these problems, use MOVE to copy the memory to a temporary area and BPUT from that area.

Data
DATA (D.)

Syntax: DATA ...

Stores data to be read by the READ statement. The DATA statement occupies the rest of the line and
cannot be followed by another statement on the same line.

The contents of a DATA statement are either strings or numbers. Strings in DATA statements do not
require or use quotes. Multiple values can be placed in the same DATA statement, separated by
commas.

DATA statements are skipped when encountered during execution, and can be placed anywhere in the
program.

READ (REA.)

Syntax: READ {avar
svar}[,{avar

svar}]...

Reads values from one or more DATA statements into variables, starting with the beginning of the
program, or the last line number supplied with RESTORE.

READ is similar to the INPUT statement, except that it reads from DATA statements in the program
instead of from the screen editor or an I/O channel. There is also one other important difference in
string handling: the sequence “ABC,DEF” is read as one string by INPUT and two strings by READ.

Note that for strings, READ only allows an svar, referring to an entire string array. Reading into a
portion of a string array directly is not possible.

RESTORE (RES.)

Syntax: RESTORE [aexp]

Resets the current read location for the READ statement to a new line number. The next READ
statement will begin reading from the first line whose line number is ≥ the specified line number. If no
line number is specified, the beginning of the program is used (0).

It is valid to RESTORE to a line number that doesn't currently exist. If it is later added before the next
READ, the scan will begin at that line, and if the line still doesn't exist, the scan will start with the next
nearest line instead.

Trigonometric functions
The trigonometric functions involve relations between lengths and angles within a right-angle triangle.

One function not provided by Altirra BASIC that is sometimes useful is tan(x), the slope of a line with
the given angle. This can be computed as SIN(x)/COS(x).

ATN()

Computes atan(x), the arctangent of a number.

COS()

Computes the mathematical cos(x) function.

DEG

Switches the SIN(), COS(), and ATN() functions to use degrees.

See also: RAD

RAD

Switches the SIN(), COS(), and ATN() functions to use radians for angles.

See also: DEG

SIN()

Computes the mathematical sin(x) function.

Controllers
Altirra BASIC has several functions to read inputs from joystick and paddle controllers. Joystick
controllers are numbered for 0-3, while paddle controllers are numbered 0-7.

The later XL and XE computer models only have two controller ports and thus only joysticks 0-1 and
paddles 0-3 are valid.

Joystick and paddle controllers share some of the same signals in hardware, and therefore the functions
can return erroneous inputs if used with the wrong type of controller.

HSTICK()

Syntax: aexp=HSTICK (aexp)

Returns the current horizontal direction state of a joystick controller: -1 if the joystick is being pushed
left, +1 if it is being pushed right, and 0 if neither left nor right.

PADDLE()

Syntax: aexp=PADDLE (aexp)

Returns the current rotational position of a paddle controller, from 0 to 228. The value increases when

the paddle knob is rotated to the left (counterclockwise) and decreases when rotated to the right
(clockwise).

It is normal for the output value of a paddle to be somewhat noisy, especially when the paddle knob is
rotated.

PTRIG()

Syntax: aexp=PTRIG (aexp)

Returns the current trigger state of a paddle controller: 0 if the paddle button is pressed, 1 if it is not
pressed.

STICK()

Syntax: aexp=STICK (aexp)

Returns the current direction state of a joystick controller, from 0-15. These are the standard values
returned by STICK() for all 9 possible joystick directions:

10 14 6

11 15 7

9 13 5

Note that any value from 0-15 can be returned, even those not in the above chart. This can happen
either due to a noisy joystick or due to another type of controller being plugged in to the port.

STRIG()

Syntax: aexp=STRIG (aexp)

Returns the current trigger (fire) button state of a joystick controller: 0 if the paddle button is pressed, 1
if it is not pressed.

VSTICK()

Syntax: aexp=VSTICK (aexp)

Returns the current vertical direction state of a joystick controller: -1 if the joystick is pushed down, +1
if pushed up, and 0 if neither down nor up.

Graphics
GRAPHICS (GR.)

Syntax: GRAPHICS aexp

Switches the screen to a new text or graphics mode. The following modes are defined:

Type Mode Full screen
resolution

Split screen
resolution

Colors Notes

Text 0 40x24 N/A 1* One color at two brightness levels

1 40x24 40x20 5 Background + four text colors

2 40x12 40x10 5 Background + four text colors

Tile graphics 12 40x24 40x20 5 Four colors + PF2/3 switch

13 40x12 40x10 5 Four colors + PF2/3 switch

Graphics 3 40x24 40x20 4

4 80x48 80x40 2

5 80x48 80x40 4

6 160x96 160x80 2

7 160x96 160x80 4

8 320x192 320x160 1* One color at two brightness levels

9 80x192 N/A 1* 16 brightness levels of one color

10 80x192 N/A 9

11 80x192 N/A 16* Black + 15 colors at one brightness

14 160x192 160x160 2

15 160x192 160x160 4

Table 2: Graphics modes

Modes 9-15 are only available on the 600XL, 800XL, 800XE, 65XE, 130XE, and XEGS. The 400,
800, and 1200XL only support modes 0-8 with the standard OS.

In addition, two values can be added to the mode number for additional effects.

Adding 16 to the mode number suppresses the split screen at the bottom, giving a full screen text or
graphics mode instead. However, writing any text to the screen editor will end full screen mode and
revert the screen to the regular text screen (GRAPHICS 0). Also, modes 9-11 are always full screen
regardless of this flag.

Adding 32 to the mode number suppresses the screen clear, preserving whatever is in the memory used
for the new screen mode.

Note: Do not rely on screen contents being preserved when switching to another screen mode and back
with the +32 modifier. The operating system places some additional screen data called the display list
before the screen memory, and this can corrupt whatever you were trying to preserve.

Setting a GRAPHICS mode can require extra memory, up to about 7K more than a standard GR.0
screen. The more colorful and higher resolution modes take more memory. While the new mode is
active, this memory is not available to your program for arrays or the runtime stack, although it will be

returned when a different mode requiring less memory is used. The amount of memory needed can be
seen by the difference in FRE(0). If there isn't enough memory free for the requested mode, error 147
results and a mode 0 screen is automatically reopened.

After a GRAPHICS statement is successfully executed, I/O channel #6 is open to the graphics portion
of the screen. PRINT #6 can be used to write to the graphics screen, which is most useful with the text
modes 1 and 2. Only end of line (155) and clear screen (125) characters work on the graphics screen.
However, if I/O channel #6 is closed, either by the CLOSE statement or implicitly by END, graphics
commands will stop working.

COLOR (C.)

Syntax: COLOR aexp

Sets the color to use for PLOT and DRAWTO statements, and for fill commands. No default color is
defined by default, so COLOR must always be used before the first PLOT or DRAWTO to set a color
other than the background.

For most graphics modes, zero is the background color, and 1-3 are the playfield colors. A few of the
graphics modes allow 0-15.

In text modes, the value is a character value (0-255). In graphics 0, 0-127 are regular ATASCII
characters, and 128-255 are inverted versions of the characters. In graphics 1 and 2, only 64 of the
characters are available, but in four colors depending on whether an offset of +0, +64, +128, or +192 is
used. Two character sets are available for these modes, called the uppercase set and the lowercase set;
the lowercase set is selected by POKE 756, 226, while the default uppercase set is restored with POKE
756, 224.

In tiled modes (12 and 13), 128 tiles are available, 0-127. 128-255 are the same tiles, but with the third
color (SETCOLOR 2) replaced by the fourth color (SETCOLOR 3).

PLOT (PL.)

Syntax: PLOT aexp ,aexp

Draws a pixel at the given position in the current color as set by the last COLOR statement, and makes
that position the last drawn position.

Positions are given as column, row where 0 is the leftmost column the topmost row. Increasing
coordinates indicate positions to further to the right or down.

DRAWTO (DR.)

Syntax: DRAWTO aexp , aexp

Draws a line from the last drawn position to the given position (column,row) in the current color. That
position then becomes the last drawn position.

The starting pixel at the last drawn position is not drawn by DRAWTO, but the ending pixel is.

DRAWTO acts erratically when used in a GRAPHICS 0 screen, due to the screen (S:) device not
handling cursor updates very well when the editor (E:) shares the same screen. In particular, the last
character can sometimes be corrupted. It's recommended to avoid drawing lines on a GR.0 screen.

POSITION (POS.)

Syntax: POSITION aexp , aexp

In GRAPHICS 0, moves the text cursor to the given (column, row) position.

In any other GRAPHICS mode, moves the drawing cursor to a new position. Nothing is actually drawn
at that location, however. Note that this is different than the last drawn cursor used by DRAWTO; the
new position is not copied to the last drawn position unless a write to IOCB #6 occurs.

LOCATE (LOC.)

Syntax: LOCATE aexp ,aexp ,avar

Reads the color of the pixel at the given location, specified by column and then row, and places its
value into a variable. The drawing cursor is moved to the new position.

In GRAPHICS 0, this also moves the cursor to one past the given location.

SETCOLOR (SE.)

Syntax: SETCOLOR aexp ,aexp ,aexp

Changes one of the four playfield colors or the background color.

The first argument is the color to set, 0-3 for the playfield colors and 4 for the background color. The
values are different than for the COLOR statement, where 0 is the background color and 1-3 are the
first three playfield colors.

The second argument is the hue of the color, from 0-15. Zero is no hue (grayscale).

The third argument is the brightness (luminance) of the color, from 0-15. There are eight brightnesses
at even values from 0-14. An odd value gives the same brightness as the next lower even value.

The playfield color values drawn with the PLOT and DRAWTO statements always match the
corresponding colors set by SETCOLOR, and changing one of the playfield colors will immediately
change all pixels that were drawn with that color. In other words, any pixel drawn with COLOR 1 will
always have the color set by SETCOLOR 0, even if those pixels were drawn before SETCOLOR was
executed. Trying to use SETCOLOR between PLOT/DRAWTO statements to put more colors on
screen won't work.

In high-resolution modes – GRAPHICS 0 and 8 – the background color for the text area is color 2, but
the foreground color has the hue of color 2 with the brightness of color 1. The hue of color 1 is ignored,
and the foreground and background colors cannot have different hues.

All colors set by SETCOLOR are reset to defaults whenever a GRAPHICS statement is executed,

equivalent to the following statements:

SETCOLOR 0,2,8
SETCOLOR 1,12,10
SETCOLOR 2,9,4
SETCOLOR 3,4,6
SETCOLOR 4,0,0

Sound
SOUND (SO.)

Syntax: SOUND aexp ,aexp , aexp , aexp

Plays sound on one of the four sound channels. The parameters are, in order: channel, period,
distortion, and volume.

The sound channel ranges from 0-3. Four independent sounds can be played simultaneously on each of
the four sound channels.

The period of the sound ranges from 0-255. Period is the inverse of pitch, so lower period values result
in higher pitched tones. For pure notes, this is related to the pitch of the sound as follows:

pitch= 31960.4
period+1

Hz (NTSC)

pitch= 31668.7
period+1

Hz (PAL/SECAM)

The formula to use depends on the television standard supported by your computer (or enabled in an
emulator). The following is one set of period values to produce a musical scale:

C (lower octave) 254

C# 240

D 227

D# 214

E 202

F 190

F# 180

G 170

G# 160

A 151

A# 143

B 134

C (upper octave) 127

Table 3: Sample pitch values for music

The distortion value selects whether pure tones or noises are played:

1, 3, 5, 7, 9, 11, 13, 15 Silent

0 17-bit + 5-bit noise

2, 6 5-bit noise

4 4-bit + 5-bit noise

8 17-bit noise

10, 14 Pure tone (square wave)

12 4-bit noise

Table 4: Distortion values for SOUND statement

Three different noise generators can be combined via the distortion setting. For the noise generators,
the resulting sound depends both on the types of noise selected and the period.

Volume ranges from 0-15, where 0 is silent and 15 is loudest. Use volume 0 to silence a channel.

A sound continues to play until replaced by a new sound on the same channel, or stopped by END.
Playing sounds can also be interrupted by disk access or any other access over the SIO bus, such as
using the printer or a serial (RS-232) device.

For more details on sound generation, see the POKEY chapter of the Altirra Hardware Reference
Manual. The SOUND statement resets AUDCTL to 17-bit noise polynomial and 64KHz clock, clears
asynchronous receive mode to unlock channels 3+4, writes the period value to AUDFn, and combines
the distortion and volume to write to AUDCn.

Error handling
TRAP (TR.)

Syntax: TRAP aexp

Sets a program line to jump to when an error occurs, or clears any such line if ≥32768. If a error trap
has already been set, the new setting replaces the previous one.

Ordinarily, whenever an error occurs, BASIC prints an error message with the error number and line
number where the error occurred, and then drops to immediate mode with a Ready prompt. Often, it is
useful for the program itself to be able to handle errors more gracefully. TRAP allows the program to
jump to an error handling routine instead. For instance, when trying to open a file, TRAP can be used to
display a readable error message to the user and continue the program.

When an error occurs and execution jumps to the TRAP line, three memory locations hold information
about the error. PEEK(195) retrieves the error that occurred, and PEEK(186)+256*PEEK(187) or
DPEEK(186) retrieves the line number of the line where the error occurred. The TRAP setting is
automatically disabled when the trap handler is executed, so TRAP must be used to reset it if error
trapping is still desired.

An existing TRAP is also reset by NEW, but not by LOAD, RUN, or CLR.

The [BREAK] key cannot be trapped by TRAP and always drops to immediate mode with a stopped
message.

ERR()

Syntax: ERR (0)
ERR (1)

Returns either the last error number (ERR(0)) or the line at which the error occurred (ERR(1)). These
are useful in TRAP routines to more gracefully handle errors that occur.

File management
Several statements are included in Altirra BASIC to allow manipulation of files without having to exit
temporarily to the DOS menu. These are mainly intended to be used from immediate mode, but can
also be used from a program in deferred mode.

DIR

Syntax: DIR [sexp]

Lists files on disk or a device. If no filename is specified, all files on D1: are listed (D1:*.*). Otherwise,
files on the given device and pattern are listed. Note that a filename pattern must be included, so to list

files on D2:, the string “D2:*.*” must be supplied and not just “D2:”.

ERASE

Syntax: ERASE sexp

Deletes a file.

This is a synonym for XIO 33,#7,0,0,filename.

PROTECT

Syntax: PROTECT sexp

Marks a file as protected (read-only). This is also called locking a file.

This is a synonym for XIO 35,#7,0,0,filename.

RENAME

Syntax: RENAME sexp

Renames a file. The string argument consists of the device name, original filename, and new filename,
i.e.: “D1:OLD.BAS,NEW.BAS”.

This is a synonym for XIO 32,#7,0,0,filenames.

UNPROTECT

Syntax: UNPROTECT sexp

Marks a file as unprotected (read-write).

This is a synonym for XIO 36,#7,0,0,filename.

Exiting BASIC
BYE (B.)

Exits BASIC.

On the 400/800 OS (OS-A or OS-B), this will start the Memo Pad. On the XL/XE OS, this invokes the
self-test.

Typically, there is not much use for this command. However, one use for it is to force a cold restart to
boot a disk. Normally, pressing the RESET button on an XL/XE will simply restart BASIC, but if BYE
is used to exit to the self test, RESET will then start the disk boot process. This avoids having to power
off and on the computer.

DOS (DO.) / CP

Exits to DOS. CP is a synonym for DOS, named after versions of DOS that have a line-oriented
command processor (CP) instead of a DUP.SYS-like menu.

DOS 2 provides a facility called MEM.SAV to preserve the current BASIC program while the DOS
menu is active. If this file is present, the contents of the BASIC program are saved to the MEM.SAV
file when the menu is loaded, and restored when BASIC is restarted. This allows the menu to be used
without disturbing the current BASIC program. However, writing and reading MEM.SAV takes time,
and Altirra BASIC provides utility commands like DIR and ERASE that can avoid the need to enter the
DOS menu.

Some alternative DOSes don't have a MEM.SAV-like facility. If a MEM.SAV-like facility is not used,
entering DOS via the DOS statement will typically cause the current program to be lost. Others can use
a ramdisk on a 130XE or other system with extended memory to save and restore the BASIC program
much more quickly.

Memory access
Several statements and functions are provided to directly access memory in the system. This allows
access to both software and hardware functionality not otherwise directly accessible from BASIC.

Memory addresses range from 0-65535, and each address corresponds to a memory location that holds
a byte value from 0-255. PEEK and POKE are the classic methods to access memory directly, but
Altirra BASIC supports more powerful memory access commands, such as DPEEK() and MOVE.

While direct memory access is a powerful technique, there are no checks on any addresses used.
Improper memory access can corrupt the running program and its data, hang the system, or even cause
corruption to floppy disks on subsequent disk accesses. Care should be taken when using these
facilities.

One problem with direct memory access is finding an area of memory that is free for use. The base
address of BASIC depends on whatever DOS is loaded, so the BASIC program may be at varying
addresses. String arrays can be used to allocate memory, but move whenever variables are added or
program lines are altered, making them unsafe for some uses. The upper half of page six ($0680-06FF
in hex, or 1664-1791 in decimal) is unused by BASIC and frequently used as an area for machine
language programs. In cases where INPUT or ENTER statements are not used with long lines, the
lower half of page six ($0600-067F hex, 1536-1663 decimal) can also be used.

Another way to reserve memory is to use the LOMEM command to move up the BASIC program,
reserving memory between DOS or the operating system and BASIC. However, because LOMEM
clears the current program, it must be used before the program is loaded.

POKE

Syntax: POKE aexp , aexp

Changes the byte value at the given memory location. The first argument is the memory address and
the second is the value to write.

PEEK()

Syntax: aexp=PEEK (aexp)

Returns the byte value at the given memory location.

DPEEK()

Syntax: aexp=DPEEK (aexp)

Returns the 16-bit integer stored at the given location.

DPEEK(addr) is equivalent to PEEK(addr)+256*PEEK(addr+1), but faster and easier to use.

DPOKE

Syntax: DPOKE aexp ,aexp

Stores a 16-bit integer at the given location.

DPOKE addr, value is equivalent to POKE addr, value&$FF: POKE addr+1, (value&$FF00)/256, but
faster and easier to use.

ADR()

Syntax: aexp=ADR (sexp)

Returns the starting address in memory of a string. This can be used with a string expression, literal, or
variable. If a substring is used, i.e. A$(4) or A$(4,7), the address points to the start of the substring.

The string address may become invalid after it has been retrieved by ADR(). Addresses of string arrays
or substrings of string arrays can be invalidated by CLR or adding/removing/changing lines in the
program. Addresses of string literals will be invalidated by changes to program lines.

FRE()

Syntax: aexp=FRE (aexp)

Returns the amount of free memory, in bytes. The argument is ignored.

Free memory is defined as the amount of memory remaining for additional program storage, arrays,
strings, the runtime stack, and text/graphics.

MOVE

Syntax: MOVE aexp,aexp ,aexp

Moves (copies) a block of memory from one location to another. The three arguments are, in order:
starting source address, starting destination address, and number of bytes to move. This is much faster
than moving memory with PEEK and POKE statements.

By default, MOVE does an ascending copy, which means that the copy starts at the addresses given and
advances to higher addresses. This is fine if the source and destination blocks do not overlap, or if the
source address is higher than the destination address. It fails if the blocks overlap and the source
address is lower than the destination address, though, because part of the source is overwritten before it
can be moved. This results in part of the source block being repeated.

To solve this, MOVE also supports a descending copy by use of a negative length. In that case, the
copy starts from the end of the source and destination blocks, and proceeds downward in memory,
allowing the third case to work. Note that in this case, the addresses are still for the start of the source
and destination blocks.

In summary:

• If the blocks do not overlap, either ascending or descending copy will work.

• If the blocks overlap and source > dest, use positive length (ascending copy).

• If the blocks overlap and source < dest, use negative length (descending copy).

Note that it is also possible to deliberately use the “wrong” method in order to fill memory with a
pattern. For instance, MOVE adr, adr+1, len will fill memory with the value of PEEK(adr).

LOMEM

Syntax: LOMEM aexp

By default, BASIC uses all memory available, starting at the bottom of memory just above the OS or
DOS, and all the way up to just before the screen. The LOMEM command allows the bottom to be
raised up so that memory can be reserved between the OS/DOS and BASIC. Once LOMEM is
executed, BASIC is reset to use the given address as the new bottom of memory.

For instance, when booting DOS 2.0S with BASIC, the bottom of BASIC memory is usually at 7420
($1CFC). Executing LOMEM $2000 causes BASIC to only use memory starting at 8192 ($2000),
reserving 772 bytes of memory from 7420-8191 ($1CFC-1FFF). This memory is then free for other
uses, such as P/M graphics or USR() routines. The current value of LOMEM can be retrieved with
DPEEK(128).

LOMEM can also be used to lower the bottom of BASIC memory, if it was previously raised.
However, there are no checks on the value passed to LOMEM. Executing LOMEM 0, for instance, will
crash the computer in short order.

USR()

Syntax: aexp=USR (aexp [,aexp]...)

Invokes a machine language routine by address. This is a powerful facility, as machine code can run
much faster and do more than BASIC code can.

The first argument to USR() is the starting address of the routine to invoke, followed by zero or more
optional arguments. On entry, the byte on the top of the 6502 stack will contain the number of
arguments passed to the function, followed by any 16-bit integer arguments in high-then-low order,
starting with the leftmost argument. On exit, the routine should place the desired return value as a 16-
bit integer at FR0 (212 / $D4) before returning to BASIC with RTS.

Because USR() always pushes a minimum of one byte onto the stack that must be removed (argument
count), it is not generally possible or safe to use it to invoke routines that were not originally written to
be called with USR(). There are no such routines by default, so one must be provided by the BASIC
program, either in a string or written to memory with POKE, DPOKE, or BGET statements.

Here is an example of an assembly language routine compatible with USR() to compute the bitwise left
shift of an integer number, a×2b mod 65536.

Assembly language:

;pop argument count (not used)
pla

;pop the value to shift into FR0
pla
sta fr0+1
pla
sta fr0

;pop the shift count
pla
tay
pla
tax

;return 0 if we're shifting by 16 bits or more
tya
bne is_zero
cpx #16
bcs is_zero

;check if shifting by zero bits
txa
beq no_shift

shift_loop:
asl fr0
rol fr0+1
dex
bne shift_loop

no_shift:
rts

is_zero:
;zero FR0
jsr zfr0
rts

Example BASIC program using it:

10 FOR I=0 TO 28:READ X:POKE 1664+I,X:NEXT I
20 PRINT USR(1664,1000,10)
30 DATA 104,104,133,213,104,133,212,104,168
40 DATA 104,170,152,208,15,224,16,176,11,138
50 DATA 240,7,6,212,38,213,202,208,249,96
RUN
40960

Error codes
BASIC errors

2 – Out of memory

Not enough free memory is left to load a program, add a program line, allocate an array, or record the
location of a FOR or GOSUB statement. The FRE() function can be used to monitor the amount of free
memory.

Note that if Error 2 results from a runtime stack overflow (FOR/GOSUB), a CLR statement may be
needed to clear the runtime stack before you can do anything. Otherwise, system memory may be so
full that there is no room for the statements you are trying to enter.

The GRAPHICS statement can also trigger an out of memory error, but in that case the system error
147 is triggered instead.

3 – Value error

An invalid value was passed to a statement or function, such as LOG(-1).

4 – Too many variables

The maximum of 128 program variables has been reached and there is no room for another variable.
Every unique variable name occupies one of these variable slots. A, A(), and A$() are all distinct
variable names.

Removing all references to a variable does not remove the variable itself. The only way to remove
references to unused variables is to LIST the program to a text listing, reset the program and variable
tables with NEW, and re-enter it with the ENTER statement.

5 – Bad string length

An attempt was made to DIMension a string array to length 0, or to reference a substring with invalid
indices. This includes a starting index of 0, starting index beyond the string length, or ending index
before starting index.

6 – Out of data

A READ statement attempted to read data beyond the end of the last DATA statement.

7 – Value greater than 32K

A statement or function that accepts integers was given an unsupported value between 32768 and
65535. This includes string indices, line number expressions, and arguments to the game controller
functions.

8 – Input error

A READ or INPUT statement encountered input that failed to parse, such as string input when a
number was expected.

9 – DIM error

A DIM statement attempted to initialize an array to an invalid size of 0, or larger than 64KB.

10 – Argument stack overflow

Currently, this error is not used by Altirra BASIC.

11 – Math error

A numeric expression resulted in overflow, underflow, or another error such as division by zero or
invalid input (LOG(-1)). An overflow occurs when a result exceeds ±1098, while an underflow results
when the magnitude is below ±1098 . Most operators will signal overflows, but not all will signal
underflows.

12 – Line not found

A GOTO, GOSUB, ON...GOTO/GOSUB, IF, TRAP, or CONT statement encountered a line number
reference to a line that doesn't exist.

13 – No matching FOR

A NEXT statement was executed that could not be matched to a FOR statement with the same variable.

14 – Line too long

An entered line either produced too long of a tokenized line (exceeds 255 bytes). Some tokens,
particularly small numbers, take many more bytes than in the original text, and so it is possible for a
syntactically valid line to take too many bytes when parsed.

Note: Atari BASIC can issue this error in some cases when its internal parsing stack overflows while
parsing a complex expression. Altirra BASIC can generally parse more complex expressions than Atari
BASIC.

15 – GOSUB or FOR gone

The line that originally held a remembered GOSUB or FOR statement has been deleted.

In Altirra BASIC, this error is issued when CONT is executed, rather than later when the NEXT or
RETURN statement is executed.

16 – Bad RETURN

A RETURN statement was executed when there is no matching GOSUB statement to return to.

17 – Syntax error

Program execution reached a line that contains a syntax error.

Altirra BASIC does not store syntax errors, so this cannot normally occur unless the program was
originally saved from Atari BASIC with a syntax error in it.

18 – Invalid string

The VAL() function was invoked with a string that did not parse to a valid number.

19 – Load error

A LOAD or CLOAD statement was executed and the program was read, but was either too long to fit
in memory or was not a binary saved BASIC program.

20 – Bad device number

An invalid I/O channel number was used, such as #8, or #0 for a statement other than PRINT or
INPUT.

28 – Invalid structure

A broken IF...ENDIF or IF...ELSE...ENDIF block structure was found during program execution, such
as an IF that has no matching ENDIF.

System errors

The most common system errors are listed below. Some DOSes may report their own specific error
codes not listed here.

129 – IOCB in use

An attempt was made to OPEN an I/O channel that is already open.

130 – unknown device

A statement was executed with a filename that references an unknown device, such as A:FILE when no
A: device has been registered.

131 – write only

A get operation was attempted on an I/O channel that is open only for read-only access.

132 – invalid command

An I/O command was attempted on an I/O channel that the device does not support, such as an
unknown XIO command.

133 – not open

An I/O operation was attempted on an I/O channel that isn't open.

134 – invalid IOCB number

An I/O operation was attempted with an invalid I/O channel number, not corresponding to one of the
eight I/O channels.

This error ordinarily should not occur with BASIC statements, as BASIC validates the I/O channel
number first.

135 – read only

A put operation was attempted on an I/O channel that is open only for write access.

136 – end of file

A get operation, such as INPUT, GET, or BGET, reached the end of the stream before the operation
completed. Note that an operation that completes exactly at the end of the file does not trigger this
error.

137 – truncated record

A record-based get command encountered a line that was too long. In BASIC, this occurs if the INPUT
statement reads a line that is longer than 255 characters, including the EOL. Note that this does not
occur if INPUT reads into a string array that is too short; in that case, the extra data is discarded.

138 – device timeout

No response was encountered when attempting a serial bus operation. This can happen when
referencing a disk drive that doesn't exist – D3: with only two disk drives – or trying to use a disk drive
that is in the middle of formatting a disk.

139 – device NAK

A serial device returned a NAK response to a command, which means that the command was
unsupported or invalid.

140 – serial framing error

A framing error was encountered while sending or receiving data from a serial device. This typically
means an unstable connection between the computer and the serial device. With disk drives and a high-
speed OS, it can mean that the transfer rate is too high.

141 – cursor out of range

The cursor was moved out of valid (X,Y) coordinates for the current screen on either the E: device (#0)
or S: device (#6).

142 – serial overrun

The computer did not read data quickly enough from a serial device and some data was lost. With disk
drives, this typically means that a high-speed transfer is too fast for the display, especially if custom
vertical blank (VBI) or display list (DLI) routines are used.

143 – serial checksum error

A checksum error was encountered while receiving data from a serial device, which means that the data
transferred with errors. This probably means an unstable connection between the computer and the
serial device.

144 – device error

A serial device reported an error during an operation. This can happen with disk operations if the disk
drive has difficulty reading or writing to a disk. Attempting to write to a write-protected disk can also
cause this error.

145 – bad screen mode

A GRAPHICS command was executed with a screen mode that the computer's OS doesn't support. For
the old OS-A or OS-B ROMs on a 400/800, this happens if modes 12-15 are requested.

146 – not supported

An XIO command was issued on a device that doesn't support the command.

147 – out of memory

Not enough free memory to complete the operation. This can happen if the GRAPHICS statement is
executed with a screen mode that requires more memory than is free, e.g. GRAPHICS 8 with FRE(0) =
4000.

DOS errors

160 – bad disk drive number

Attempted to use a disk drive number higher than supported by the loaded DOS, such as D4: when only
D1: and D2: are supported.

161 – too many open files

Attempt to open a file on disk when the limit of open files in DOS has already been reached. For Atari
DOS 2.x, the limit is usually three simultaneously open files.

162 – disk full

No space left on the disk.

164 – internal file number mismatch

DOS encountered broken file structures on the disk during an I/O operation, specifically a file linking
to sectors that don't belong to the file. This can indicate a damaged disk that requires repair. It can also
happen if POINT is executed with an invalid position.

165 – filename error

A filename was used that doesn't conform to DOS naming rules, such as a name with characters that are
not allowed ($ with DOS 2.0).

166 – point data length error

One of the parameters to the POINT command is invalid and doesn't correspond to a valid file position.

167 – file locked

Attempted a write operation to a file that has been locked with PROTECT or XIO 35.

169 – directory full

Attempted to create a file on a disk that cannot hold any more. With DOS 2.x, only 64 files can be
stored on a disk. This can happen even if there are free sectors on the disk.

170 – file not found

A disk operation specified a file that doesn't exist on the disk.

Defined memory addresses
Below is a list of memory locations that are defined in Altirra BASIC and can be read with the PEEK()
or DPEEK() functions, or where noted, modified with POKE/DPOKE.

186-187 / $BA-BB (STOPLN)

Contains the line number where the last error occurred. This can also be retrieved with ERR(1).

195 / $C3 (ERRSAV)

Contains the last error number. This can also be retrieved with ERR(0).

201 / $C9 (PTABW)

Width of a tab stop, as used by the PRINT statement when comma separators are used. Reset to 10 on
boot and after a NEW.

212-217 / $D4-D9 (FR0)

Floating point register 0, used as the primary accumulator for the floating-point library. Machine
language routines invoked by USR() should place the return value as a 16-bit unsigned integer in
locations $D4 (low byte) and $D5 (high byte) before returning.

756 / $2F4 (CHBAS)

Sets the character set used in text modes; normally set to 224 ($E0). In graphics modes 1 and 2, it can
be changed to 226 ($E2) to select the lowercase character set.

765 / $2FD (FILDAT)

POKE the desired color for fill operations (XIO 18) into this location.

1664-1791 / $680-6FF

Unused by OS, DOS, and the BASIC interpreter; available for user program use. This is a popular area
to place small machine-language programs.

Note: The lower half of page six at 1536-1663 ($0600-067F) is also commonly used. This area is not
entirely safe as the BASIC interpreter will use it whenever the INPUT or ENTER statement reads lines
longer than 128 characters long, but can be used otherwise.

Implementation limits
Expression nesting

Expressions may contain up to 32 levels of precedence nesting.

FOR/NEXT and GOSUB nesting

Limited only by available memory, as long as there is room for the runtime stack.

Line length

A line may contain up to 255 characters before tokenization and up to 255 bytes after tokenization.

Numeric array size

Limited only by available memory. Normally, the largest numeric array that can be created is 6315
elements, with no program loaded and the highest possible FRE(0) value of 37902 bytes.

Program length

Limited only by available memory.

String array size

The longest string array that can be created is 32767 characters.

Variable count

Programs may contain up to 128 uniquely named variables, including numeric variables, numeric
arrays, and string arrays.

Variable name length

Variable names may be up to 128 characters long.

Special techniques
Optimizing for size

Numeric constants

Constant numbers in a program, i.e. 12, are big – they take one byte for the token and six bytes for the
number. Constant numbers can therefore contribute a large amount to the overall size of a tokenized
program. Since variable references only take a single byte, a common trick is to declare variables for
commonly used constants, such as 0, 1, and the line numbers of frequently used subroutines.

Numeric arrays

Numeric arrays require 6 bytes per element. This can add up quickly for large numeric arrays. An
alternative to using arrays is strings, which require one byte per character. When only values 0-255 are
required, the values can be stored as characters in a string array.

Also, remember that arrays in Altirra BASIC start with subscript 0, not 1. DIM A(5) allocates six
elements.

Variables

Each variable takes 8 bytes for the value of the variable, along with one byte for each character in the
variable's name. Shortening variable names and reusing variables can therefore save memory.

Note that these costs don't scale with the number of times a variable is used. Each use of a variable only
takes one byte, no matter how long or short the name of the variable is.

Cleaning out unused variables by LISTing a program out to disk and re-ENTERing it can also recover
some memory.

DATA statements

DATA statements are a reasonably compact way to store numbers, as the contents of a DATA statement
are stored as text. Small numbers therefore can be stored in 2-4 bytes instead of the 7+ bytes that
constants would require. However, it is still more compact to use strings, if each value can be encoded
into a character.

Chaining program execution

One program can chain to another by means of the RUN statement with a filename. This can remove
seldom-used portions of a program from memory, requiring only the core to be resident at the most
memory hungry point. Variables and other data must be passed between the programs by other means,
such as a static area of memory (upper half of page six), a file, or even the screen.

Some programs use the ENTER and CONT commands to create overlays, where portions of a program
are deleted and inserted during execution. This can be a more flexible way to save memory, but it is
much slower than RUN as program text must be parsed. Also, it is important to note a limitation in
Altirra BASIC's CONT statement, which is that any line on the runtime stack must exist when CONT is

executed. RESTORE should also be used before a READ statement after such edits, or the READ
statement may read garbage data.

Combining program lines

Each program line occupies three bytes in memory, and thus splicing together lines with : can save a bit
of memory.

Optimizing for speed

Abbreviated statement names

Abbreviating statement names, i.e. GR. instead of GRAPHICS, does not affect program speed. All
abbreviated statement names are always expanded to the full name anyway and stored as the same
token in the tokenized program.

Variable lookups

All variables are referenced by index in the tokenized text. This means that, unlike some other BASIC
interpreters, the length of variables names and the order in which they are declared or first used does
not matter. All variables are accessed in constant time in Altirra BASIC without any searching.

Line number lookups

Whenever a line number is referenced, such as in a GOTO or RESTORE statement, BASIC must
search for a line with that line number. This can take a lot of time, particularly in big programs with a
lot of lines.

Altirra BASIC contains some optimizations to reduce the amount of time spent searching for lines: it
caches the return locations for FOR and GOSUB statements, and starts searching from the current line
instead of the beginning of the program when appropriate. However, line searches can still take a
noticeable amount of time.

Two optimizations can be applied to speed up line searches. First, lines can be combined by placing
multiple statements on the same line. The search time is determined by the number of lines checked
and not their length, so reducing the number of lines speeds up the search even though the lines are
longer.

Second, moving target lines earlier in the program can also speed up the search. A commonly used
technique is to place frequently executed code at the lowest line numbers and seldomly used code at
higher line numbers.

Caution: Some code movements that are faster under Atari BASIC may be slower under Altirra
BASIC due to the starting point optimization. In particular, changing 1000 GOTO 1010 to 1000 GOTO
990 can be faster under Atari BASIC, but slower under Altirra BASIC. This is because in the former
case the search can be started from the current line 1000 to quickly reach line 1010, but in the latter the
search has to be started from the beginning of the program.

Computed GOTOs

Altirra BASIC allows expressions for all line numbers except for the IF statement, which is trivially
worked around with IF...THEN GOTO. This can often be exploited to avoid a large amount of
conditional logic, such as moving a character in response to joystick movement by means of GOTO
10+STICK(0). This incurs a line lookup, but the line lookup is still much faster than executing multiple
BASIC statements.

IF..THEN vs. block IF

When multiple statements are controlled and a condition is false, IF..THEN is faster than block IF. This
is because the interpreter must scan a statement at a time for IF blocks, whereas for IF..THEN the target
is specified by line number and therefore proceeds a line at a time. The block IF is particularly slower
when scanning past nested IF instructions as it must also parse the condition.

Strength reduction

Often an expression can be simplified to use faster operators: x*2 = x+x, x^2 = x*x. The latter is
especially lucrative as x^y is computed internally as 10^(clog(x)*y), which is rather slow. However, be
aware that the results may not be exactly the same (although usually more accurate).

Moving and filling memory

While PEEK and POKE can be used in a loop to copy memory around, doing so is very slow due to
loop overhead in the interpreter.

The classic way to move memory around quickly is to use strings. String manipulation is much faster in
BASIC than moving bytes or characters manually. There is no requirement that a string array actually
hold text, as it can hold arbitrary binary data, including null (zero) bytes and end-of-line (EOL)
characters. One use for string manipulation is to quickly move player/missile (P/M) graphics.

In Altirra BASIC, the MOVE command can also be used to quickly move and fill memory.

Recovering a protected program

Occasionally there is a need to recover a BASIC program that has been protected to prevent LISTing.
Such programs cause the BASIC interpreter to lock up when any command is entered in immediate
mode after the program is loaded, even with a warm reset. Typically, such programs can be recovered
with the following steps:

TRAP 32750
LOAD "D:PROGRAM.BAS"
32750 DPOKE 140,DPEEK(138)+3:DPOKE DPEEK(138),32768:POKE
DPEEK(138)+2,3:END
-1

The TRAP statement must be executed before the protected program is loaded. The added line 32750
transforms itself into the new immediate mode line, removing any deliberately damaged lines after it.

The final -1 invokes line 32750 by causing an Error 3 without triggering a line lookup for line 32768,
which is what happens when commands are entered in immediate mode and what normally causes the
lockup.

This trick can also be done in Atari BASIC, but is more difficult without adding a variable to the
program and without DPEEK().

Alternatively, if only a readable listing is required, the injected line can simply be used to trigger the
LIST command:

TRAP 32750
LOAD "D:PROGRAM.BAS"
32750 LIST "D:PROGRAM.LST",0,32749:NEW
-1

Compatibility with other BASICs
Compatibility with Atari BASIC

Saved program compatibility

A program saved from Atari BASIC can be loaded into Altirra BASIC, without issues.

Programs saved from Altirra BASIC can be loaded into Atari BASIC, as long as only features
compatible with Atari BASIC are used. Features specific to Altirra BASIC, such as hexadecimal
constants ($12AF) and new statements (MOVE) cannot be used in a program to be loaded back into
Atari BASIC. Attempting to do so may produce unpredictable results, including the Atari BASIC
interpreter crashing.

The following is a list of tokens (statements, operators, and functions) that are compatible with Atari
BASIC:

+, -
*, /
<, >, <=, >=
<>, =
?
ABS()
ADR()
ASC()
ATN()
BYE
CHR$()
CLOAD
CLOG()
CLOSE
CLR
COLOR
COM

CONT
COS()
CSAVE
DATA
DEG
DIM
DOS
DRAWTO
END
ENTER
EXP()
FRE()
FOR
GET
GOSUB
GO TO
GOTO

GRAPHICS
IF
INPUT
INT()
LEN()
LET
LIST
LOAD
LOCATE
LOG()
LPRINT
NEW
NEXT
NOTE
ON..GOSUB
ON..GOTO
OPEN

PADDLE()
PEEK()
PLOT
POINT
POKE
POSITION
POP
PRINT
PTRIG()
PUT
RAD
READ
REM
RESTORE
RETURN
RND()
RUN

SAVE
SETCOLOR
SGN()
SIN()
SOUND
SQR()
STATUS
STICK()
STOP
STR$()
STRIG()
TRAP
USR()
VAL()
XIO

The following tokens are not compatible with Atari BASIC:

%, !, &
$hhhh (hex)
BGET
BPUT

DIR
DPEEK()
DPOKE()
ERASE

ERR()
HEX$()
HSTICK()
LOMEM

MOVE
PROTECT
RENAME
UNPROTECT

VSTICK()

The IF statement needs special mention as it has two forms that share the same token. The IF...THEN
form is compatible with Atari BASIC, while the IF block form is not.

PRINT/LPRINT token checking bug (Revision A only)

Atari BASIC rev. A has a bug in its code to check whether a PRINT or LPRINT statement ends in a
dangling semicolon or comma, causing it to erroneously also check the last byte of string and numeric
literals as if it were an expression token. As a result, printing a literal string ending in Control-R or
Control-U, or constant numbers with the digits 12 or 15 in the last mantissa byte (e.g. 1.00000012), will
suppress the ending newline as if a semicolon was used. This bug was fixed in rev. B and Altirra
BASIC doesn't have this bug.

Save bug (Revision B only)

Revision B – and only rev. B – of Atari BASIC has a bug where it extends the BASIC program by 16
bytes every time it is saved. This is reflected as growth in the first segment of the program that holds
the argument stack area. Altirra BASIC does not have this bug, but it detects and corrects this problem
when the program is re-saved. The error is kept on load to preserve memory layout.

Array sizes

Atari BASIC limits the size of a numeric array to 32,767 bytes or less. Altirra BASIC does not have
this limitation. However, it does still limit the size of a string array to 32,767 bytes.

FRE() bug

The FRE() function in Atari BASIC actually reports one byte less than is actually available between the
top of the runtime stack and the bottom of the screen. However, Atari BASIC doesn't actually allow
that last byte to be used, so this is consistent. Altirra BASIC replicates this bug.

CHR$() / STR$() bug

Due to a lack of a dynamic string allocation system, Atari BASIC uses fixed buffers for the results of
the CHR$() and STR$() functions. The result is incorrect results if either function is used more than
once in the same expression, as the second invocation will overwrite the buffer used by the first, and
then the second string is used twice. Because of implementation constraints, Altirra BASIC has the
same behavior.

Unary operator parsing

Atari BASIC only allows one unary operator preceding a value. For instance, -X is allowed, but --X is
not. When a constant is used, one of the leading signs can be absorbed by the number parser, so --1 is

allowed, but ---1 is not.

Altirra BASIC can both parse and execute multiple leading unary operators. A program containing such
constructs, however, is not guaranteed to execute properly under Atari BASIC. Parentheses can be used
if necessary to separate the unary operators.

CONT limitations

Atari BASIC caches the the program location for the next DATA statement after a READ and does not
update this cache when the program is edited. If a subsequent READ occurs without a RESTORE,
garbage can be read as data. RESTORE is therefore required to reset the DATA location. This is also
true in Altirra BASIC.

The CONT statement in Atari BASIC can continue program execution even if some of the FOR or
GOSUB statements being tracked in the runtime stack no longer exist. This produces an error if those
lines still don't exist when a matching NEXT or RETURN is executed for those entries. Altirra BASIC
checks this immediately when CONT is executed and will fire an error immediately if one of the
referenced lines is missing.

Invalid IOCB numbers

For compatibility, Altirra BASIC replicates some of the I/O channel number validation bugs in Atari
BASIC. A notable case is that most commands prohibit use of IOCB #0, but due to overflow will allow
its use via IOCB #16. INPUT #16 is particularly used as it bypasses the ? prompt normally emitted.

Memory layout differences

Like Atari BASIC, Altirra BASIC is an 8K left-slot cartridge with no cartridge initialization routine and
entry point at the cartridge base address of 40960 ($A000).

Zero page usage for Altirra BASIC is different than for Atari BASIC, except for specific locations
matched for compatibility. Programs that attempt to reuse portions of the BASIC interpreter's page zero
space or read/modify undocumented variables may fail. Altirra BASIC is compatible with usage of
memory locations documented in the Atari BASIC manual.

Program memory layout is mostly the same between Altirra BASIC and Atari BASIC. The variable
name table, variable value table, statement table, and string/array tables have the same format and
order. However, the argument stack and runtime stacks have different formats.

Compatibility with OSS Basic XL/XE

Saved program compatibility

The Altirra BASIC language is a subset of that supported by OSS Basic XL and intentionally uses the
same token values for compatibility. An Altirra BASIC program can therefore be loaded and run by
Basic XL or Basic XE.

Similarly, a Basic XL/XE program that uses only the subset of tokens supported by Altirra BASIC can
be loaded and run by the latter. Attempting to load a Basic XL/XE program with unsupported

functionality, however, will lead to undefined results.

IOCB #0

Basic XL allows IOCB #0 to be used with some commands where prohibited by Atari BASIC. Altirra
BASIC follows the latter, still prohibiting use of IOCB #0.

TRAP and the [Break] key

Basic XL/XE allows TRAP to intercept the [Break] key, if enabled with the SET statement. In Altirra
BASIC, [Break] is always untrappable.

Compatibility with Turbo-BASIC XL

Saved program compatibility

Programs can be loaded and saved between Altirra BASIC and Turbo-BASIC XL, but in general, only
the common Atari BASIC subset can be exchanged. This is because the two languages differ in
extensions and even when the same extensions are present, such as MOVE, the token values are
different. Attempting to LOAD a program saved in one interpreter that was SAVEd from the other with
an incompatible feature will likely lead to an interpreter crash.

However, in cases where the same extended statement is available in both languages with the same
syntax, i.e. MOVE, the program can be converted by LISTing it out from one and ENTERing it into the
other.

Program format
Memory layout and binary format

Altirra BASIC splits main memory into eight different regions:

Screen memory

MEMTOP (741 / $2E5)
Free memory

MEMTOP2 (144 / $90)

Runtime stack
RUNSTK (142 / $8E)

String/array table
STARP (140 / $8C)

Statement table
STMTAB (136 / $88)

Variable value table
VVTP (134 / $86)

VNTD (132 / $84)
Variable name table

VNTP (130 / $82)

Argument stack area
(256 bytes)ARGSTK (128 / $80)

Table 5: Altirra BASIC memory layout

All pointers are 16-bit. Screen memory grows down from the top (typically 49151 / $9FFF), and
BASIC memory grows up from the bottom.

Typically the argument stack area will start at 1792 / $0700 if running without DOS and around 7420 /
$1CFC when Atari DOS 2.x is loaded. On a 48K system, the top of free memory (MEMTOP) will be
around 39667 / $9C1F when the regular GR.0 text screen is active.

The binary format used by SAVE and LOAD is a memory image of the vector table (14 bytes) followed
by the memory from VNTP to STARP. Thus, the variable name table, variable value table, and
statement table are saved, while the argument stack area, string/array table, and runtime stack are not.
Also, while the variable value table is saved, only the type and token information is used – the variable
values are cleared on load.

The vector table is stored as relative to ARGSTK, such that all values stored as offsets from the bottom
of the argument stack area. This means that the first four bytes of the saved vector table should always
be $00 00 00 01. (The VNTP offset in the third and fourth bytes may be greater for some programs
saved by Atari BASIC revision B.) The sixth pointer value between STMTAB and STARP is STMCUR
($8A), which points to the current statement. It is saved out but not used on load.

Variable name table

The variable name table (VNT) consists of the names of each variable, in order that they were added to
the program. The base of the VNT is pointed to by VNTP (130 / $82) and the end by VNTD (132 /

$84). Each variable name is stored as ATASCII except for the last byte of each name, which is stored
with bit 7 set. A $00 byte terminates the VNT at the VNTD address.

For numeric arrays, the variable name ends with a (. For string arrays, it ends in $.

The VNT is only used during LISTing and parsing, but not during execution. Some commercial
programs exploit this by storing invalid data in the VNT.

Variable value table

The variable value table (VVT) holds the current value of each variable, and has an 8-byte entry for
each variable in the VNT. The VVT extends from the base at VVTP (134 / $86) to just before STMTAB
(136 / $88).

The first byte of each VVT entry holds type information about the variable:

$00 Numeric

$40 Numeric array, undimensioned

$41 Numeric array, dimensioned

$80 String array, undimensioned

$81 String array, dimensioned

Table 6: Variable types

The second byte holds the variable index for the variable. It is always $00 for the first entry, $01 for the
second, etc.

The remaining six bytes are interpreted differently depending on the type of variable:

Type
Bytes

0 1 2 3 4 5

Numeric Floating-point number

Array Storage offset First dimension limit Second dimension limit

String array Storage offset Length Capacity

Table 7: Variable entry format

The storage offset for arrays and string arrays is a relative byte offset from STARP (140 / $8C), where
0 is assigned for the first array dimensioned and thus placed at the beginning of the string/array area.
This relative offset is converted to an absolute address at runtime by adding STARP to the relative
offset.

For numeric arrays, the original dimensions are stored as limits, which are one greater than the values
that were passed in the DIM statement. Therefore, the limits stored are counts, rather than maximum
subscript values. For one-dimensional arrays, the second dimension has a limit of 1.

Statement table

The statement table, pointed to by STMTAB (136 / $88) and ending before STARP (140 / $8C),
contains all lines in the program. It consists of each program line stored back-to-back, in order of
increasing line number.

Each line begins with a two-byte line number and a length byte, where the length byte contains the
number of bytes in the entire statement, including the line number and length byte. Thus, it is always at
least three for a valid program. Adding the length to the starting address of the line gives the starting
address of the next line.

The length byte is followed by one or more statements. Each statement starts with an end position byte
containing the byte offset from the start of the line to the beginning of the next statement. After that is a
statement token, and finally zero or more expression tokens.

The following is a sample statement table:

;10 FOR I=1 TO 100:PRINT I:NEXT I
1E24: 0A 00 Line 10
 1F Line length
 17 Offset of next statement
 08 FOR
 83 I
 2D =
 0E 40 01 00 00 00 00 1
 19 TO
 0E 41 01 00 00 00 00 100
 14 End of statement (:)
 1B Offset of next statement
 20 PRINT
 83 I
 14 End of statement (:)
 1F Offset of next statement
 09 NEXT
 83 I
 16 End of line
;32768 LIST
1E43: 00 80 Line 32768
 06 Line length
 06 Offset of next statement
 04 LIST
 16 End of line

The immediate mode line is stored as line 32768, at the end of the statement table.

Floating-point (real) numbers

Floating point numbers are stored in the standard 6-byte format used by the OS math pack, consisting
of a biased-integer exponent byte and a five byte, ten-digit BCD mantissa.

The exponent byte is first and indicates a power of 100, biased by 64 so that 64 means an exponent of
1000 and 65 = 1001. The exponent is constrained to be within ±49, encoded as 15-113 ($0F-71).
Additionally, bit 7 contains a sign bit and is set if the value is negative.

The mantissa is stored as BCD digit pairs ($00-99), with the most significant digit pair first. The first
pair is to the left of the decimal point (×1), and the successive bytes are the ×0.01, ×0.0001, ×0.000001,
and ×0.00000001 positions. The number is always normalized so that the most significant digit pair is
non-zero, unless the value is zero in which case both the exponent byte and the first mantissa byte are
$00.

Examples:

00 00 00 00 00 00 = 0
40 01 00 00 00 00 = 1.0
40 03 14 15 92 65 = 3.14159265
44 12 34 56 78 91 = 1.234567891E+09
BF 01 00 00 00 00 = -0.01

Statement tokens
$00 REM
$01 DATA
$02 INPUT
$03 COLOR
$04 LIST
$05 ENTER
$06 LET
$07 IF
$08 FOR
$09 NEXT
$0A GOTO
$0B GO TO
$0C GOSUB

$0D TRAP
$0E BYE
$0F CONT
$10 COM
$11 CLOSE
$12 CLR
$13 DEG
$14 DIM
$15 END
$16 NEW
$17 OPEN
$18 LOAD
$19 SAVE

$1A STATUS
$1B NOTE
$1C POINT
$1D XIO
$1E ON
$1F POKE
$20 PRINT
$21 RAD
$22 READ
$23 RESTORE
$24 RETURN
$25 RUN
$26 STOP

$27 POP
$28 ?
$29 GET
$2A PUT
$2B GRAPHICS
$2C PLOT
$2D POSITION
$2E DOS
$2F DRAWTO
$30 SETCOLOR
$31 LOCATE
$32 SOUND
$33 LPRINT

$34 CSAVE
$35 CLOAD
$36 [let]
$37 ERROR-
$3F LOMEM
$3E DPOKE
$47 ERASE
$48 PROTECT
$49 UNPROTECT
$4A DIR
$4B RENAME
$4C MOVE

Most statement tokens are followed by one or more expression tokens. The REM ($00), DATA ($01),
and syntax error ($37) tokens are exceptions as they are followed by raw text. Altirra BASIC lists and
executes the syntax error ($37) token if found in a loaded program, but never generates it during
parsing.

Except for the text after the above three tokens, spaces are never stored in the token stream. They are
implicit based on the token pattern and deduced by BASIC when LISTing the tokenized program.

$36 is the implicit LET token, used for bare assignments with no preceding statement name.

Expression tokens
$0D hex number
$0E dec number
$0F str literal
$12 , [args]
$14 stmt. end
$15 ;
$16 line end
$17 GOTO
$18 GOSUB
$19 TO
$1A STEP
$1B THEN

$1C #
$1D <= [numeric]
$1E <> [numeric]
$1F >= [numeric]
$20 <= [numeric]
$21 > [numeric]
$22 = [numeric]
$23 ^
$24 *
$25 + [binary]
$26 - [binary]
$27 /

$28 NOT
$29 OR
$2A AND
$2B (
$2C)
$2D = [num asn]
$2E = [str asn]
$2F <= [string]
$30 <> [string]
$31 >= [string]
$32 < [string]
$33 > [string]

$34 = [string]
$35 + [unary]
$36 – [unary]
$37 ([string]
$38 ([array]
$39 ([arry DIM]
$3A ([function]
$3B ([str. DIM]
$3C , [arry/str]
$3D STR$
$3E CHR$
$3F USR

$40 ASC
$41 VAL
$42 LEN
$43 ADR
$44 ATN
$45 COS
$46 PEEK
$47 SIN
$48 RND
$49 FRE
$4A EXP
$4B LOG

$4C CLOG
$4D SQR
$4E SGN

$4F ABS
$50 INT
$51 PADDLE

$52 STICK
$53 PTRIG
$54 STRIG

$56 %
$57 !
$58 &

$60 VSTICK
$61 HSTICK
$63 ERR

The expression tokens overlap the statement token values, so the proper context must be tracked as to
whether tokens should be decoded as statement or expression tokens. This is straightforward as
statements always begin with a statement token and are then followed by expression tokens, even in the
case of an implicit LET, i.e. X=1. Expression tokens are stored in the order that they are parsed and
listed (infix) and not how they should be executed (postfix), so operator evaluation order has to be
worked out at runtime by precedence.

The $0D and $0E tokens are followed by a six-byte floating point number and are treated the same
during execution, but simply LISTed differently. The $0F string literal token is followed by a length
byte and then the string literal value.

Several tokens have the same textual representation but different meanings. The relational operators
have dual token forms for string and numeric comparisons. $2D and $2E are used for the = in an
assignment; $2D is also used for the = in a FOR statement. $12 is the comma used for separating
statement arguments, while $3C is used to separate function arguments and array subscripts.

The open parenthesis tokens are the most numerous. $3A starts a function's argument list; $39 and $3B
precede the subscripts for numeric and string arrays in a DIM statement, respectively; $38 and $37
precede subscripts for numeric and string arrays outside a DIM statement (or in a subexpression within
one!). $2B is the plain open-parens for grouping expressions. All share the one $2C token for the close
parens.

The end of statement token ($14) and end of line token ($16) generally occur at the end of each
statement, where $14 is used except for the last statement in a line, where it is replaced by $16. The $14
token represents the : used to connect statements. Therefore, it is absent in the special case of an
IF...THEN statement followed by another controlled statement, which ends immediately after the
THEN ($1B) token with no $14 token afterward. It is present in the case of an IF...THEN followed by a
line number and then a statement afterward, a consistent but useless case as the statement after the line
number is never executed.

In addition to the above tokens, all tokens with bit 7 set ($80-FF) correspond to variable references.
$80 is the first variable, $81 is the second variable, etc.

	Introduction
	Starting Altirra BASIC
	Cartridge version
	Executable version

	Immediate (direct) mode
	Direct commands
	Editing program code

	Syntax
	Line numbers
	Statement syntax
	Combining statements on one line
	Abbreviating statement names

	Program control
	RUN (RU.)
	NEW
	END
	CONT (CON.)
	STOP (STO.)

	Listing a program
	LIST (L.)
	ENTER (E.)

	Load/save
	LOAD (LO.)
	SAVE (S.)
	CLOAD (CLOA.)
	CSAVE (CS.)

	Expressions
	LET (LE.)
	Values
	d.ddd (decimal number)
	d.dddE+dd (exponential notation)
	$hhhh (hexadecimal value)
	About floating point

	Operators
	+, - (unary plus, minus)
	+, - (addition, subtraction)
	*, / (multiplication, division)
	^ (exponentiation)
	& (bitwise AND)
	! (bitwise OR)
	% (bitwise exclusive OR)
	AND
	OR
	<, >, <=, >=, =, <> (relational operators)

	Operator precedence

	Control flow
	REM (.)
	GOTO (G.) / GO TO
	FOR...NEXT (F. .. N.)
	IF..THEN (inline form)
	IF..ELSE..ENDIF (block form)
	GOSUB (GOS.)
	RETURN (RET.)
	ON..GOTO/GOSUB
	POP

	Mathematical functions
	ABS()
	CLOG()
	EXP()
	INT()
	LOG()
	RND()
	SGN()
	SQR()

	Arrays
	DIM (DI.) / COM
	Array subscripting
	CLR

	Strings
	String literals
	Allocating a string array
	Assigning to a string array
	String subscripting
	LEN()
	STR$()
	VAL()
	ASC()
	CHR$()
	HEX$()

	Input/output
	I/O channels
	File/device specifications
	OPEN (O.)
	CLOSE (CL.)
	PRINT (PR.) / ?
	INPUT (I.)
	LPRINT (LP.)
	GET (GE.)
	PUT (PU.)
	NOTE (NO.)
	POINT (PO.)
	XIO (X.)
	STATUS (ST.)
	BGET
	BPUT

	Data
	DATA (D.)
	READ (REA.)
	RESTORE (RES.)

	Trigonometric functions
	ATN()
	COS()
	DEG
	RAD
	SIN()

	Controllers
	HSTICK()
	PADDLE()
	PTRIG()
	STICK()
	STRIG()
	VSTICK()

	Graphics
	GRAPHICS (GR.)
	COLOR (C.)
	PLOT (PL.)
	DRAWTO (DR.)
	POSITION (POS.)
	LOCATE (LOC.)
	SETCOLOR (SE.)

	Sound
	SOUND (SO.)

	Error handling
	TRAP (TR.)
	ERR()

	File management
	DIR
	ERASE
	PROTECT
	RENAME
	UNPROTECT

	Exiting BASIC
	BYE (B.)
	DOS (DO.) / CP

	Memory access
	POKE
	PEEK()
	DPEEK()
	DPOKE
	ADR()
	FRE()
	MOVE
	LOMEM
	USR()

	Error codes
	BASIC errors
	2 – Out of memory
	3 – Value error
	4 – Too many variables
	5 – Bad string length
	6 – Out of data
	7 – Value greater than 32K
	8 – Input error
	9 – DIM error
	10 – Argument stack overflow
	11 – Math error
	12 – Line not found
	13 – No matching FOR
	14 – Line too long
	15 – GOSUB or FOR gone
	16 – Bad RETURN
	17 – Syntax error
	18 – Invalid string
	19 – Load error
	20 – Bad device number
	28 – Invalid structure

	System errors
	129 – IOCB in use
	130 – unknown device
	131 – write only
	132 – invalid command
	133 – not open
	134 – invalid IOCB number
	135 – read only
	136 – end of file
	137 – truncated record
	138 – device timeout
	139 – device NAK
	140 – serial framing error
	141 – cursor out of range
	142 – serial overrun
	143 – serial checksum error
	144 – device error
	145 – bad screen mode
	146 – not supported
	147 – out of memory

	DOS errors
	160 – bad disk drive number
	161 – too many open files
	162 – disk full
	164 – internal file number mismatch
	165 – filename error
	166 – point data length error
	167 – file locked
	169 – directory full
	170 – file not found

	Defined memory addresses
	186-187 / $BA-BB (STOPLN)
	195 / $C3 (ERRSAV)
	201 / $C9 (PTABW)
	212-217 / $D4-D9 (FR0)
	756 / $2F4 (CHBAS)
	765 / $2FD (FILDAT)
	1664-1791 / $680-6FF

	Implementation limits
	Expression nesting
	FOR/NEXT and GOSUB nesting
	Line length
	Numeric array size
	Program length
	String array size
	Variable count
	Variable name length

	Special techniques
	Optimizing for size
	Numeric constants
	Numeric arrays
	Variables
	DATA statements
	Chaining program execution
	Combining program lines

	Optimizing for speed
	Abbreviated statement names
	Variable lookups
	Line number lookups
	Computed GOTOs
	IF..THEN vs. block IF
	Strength reduction
	Moving and filling memory

	Recovering a protected program

	Compatibility with other BASICs
	Compatibility with Atari BASIC
	Saved program compatibility
	PRINT/LPRINT token checking bug (Revision A only)
	Save bug (Revision B only)
	Array sizes
	FRE() bug
	CHR$() / STR$() bug
	Unary operator parsing
	CONT limitations
	Invalid IOCB numbers
	Memory layout differences

	Compatibility with OSS Basic XL/XE
	Saved program compatibility
	IOCB #0
	TRAP and the [Break] key

	Compatibility with Turbo-BASIC XL
	Saved program compatibility

	Program format
	Memory layout and binary format
	Variable name table
	Variable value table
	Statement table
	Floating-point (real) numbers
	Statement tokens
	Expression tokens

